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Introduction

That the xenobiotic metabolism is the biochemical 
modification by living organisms through the ac-

tion of specialized enzymatic system. At the time of xe-
nobiotic metabolism lipophilic chemical compounds are 
converts into hydrophilic compounds which are ready to 
excrete. That the xenobiotic metabolism which is divided 
as three phases. The glutathione S-transferases (GST) are 
most important xenobiotic metabolizing enzymes in phase 
II defence enzymes. Glutathione S-transferases (GSTs) 
(EC. 2.5.2.18) are belongs to a family of multifunctional 
enzymes which conjugate electrophilic intermediates with 
the endogenous tripeptide glutathione (GSH) (Hayes et 

al., 2005).Based on both functional and sequence similari-
ties that the cytosolic GSTs are classified, which composed 
of two sub units (dimers) within the same class (Wilce 
and Parker, 1994). There are cytosolic, mitochondrial and 
membrane associated GSTs, but detoxification is the key 
function of cytosolic GSTs (Hayes et al., 2005).  Mamma-
lian cytosolic GSTs are extensively studied (Frova, 2006). 
GSTs play a key role in cellular detoxification, protection of 
macromolecules from reactive electrophiles, environmental 
carcinogens, reactive oxygen species and chemotherapeutic 
agents (Strange et al., 2000), which catalyse the nucleop-
hilic addition of glutathione to several xenobiotics that in-
cluding phase I electrophilic and carcinogenic metabolites 
(Senhaji et al., 2015; Nebert and Vasilou, 2004; Hayes and 
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Strange, 2000). The GSTs can serve as peroxidases, isomer-
ases and thiol transferases (Board et al., 2000).

Kumar et al. (1980) said that the relative specific activities 
of GSTs in various tissues of pigeon are as follows: kidney 
> liver > testes > brain > lung > heart. Quail liver cytosolic 
GSTs were purified by using S-hexylglutathione affinity 
column in tandem by a glutathione (GSH) affinity column 
and designated as QL 1, QL 2, QL 3a, QL 3b and QL 4 
(Dai et al., 1996). Based on immunochemical studies, it 
was reported that the QL 1 and QL 2 are similar to the rat 
mu (μ) class GSTs, QL 3a and QL 3b are related to the rat 
and mouse alpha (α) class GSTs (Dai et al., 1996). N-ter-
minal sequence of QL 2 is identical to the chicken mu (μ) 
class GST i.e CL 2 (Dai et al., 1996). The two initial valine 
residues which are on the N-terminus are unique character 
of bird mu (μ) class GSTs when compared the mammals 
(Dai et al., 1996).  

Chang et al. (1990) was purified CL1, CL2, CL3, CL4 
and CL5 GSTs from chicken liver by using S-hexylglu-
taathione and glutathione (GSH) combination affinity 
column. Chang et al. (1992), Liu et al. (1993), alpha (α) 
class GST, Liu and Tam (1991) mu (μ) class GST, Hsiao 
et al. (1995) theta (θ) class GST and Thomson et al. (1998) 
sigma (σ) class GST cDNAs isolated by both cloning ex-
periments and Expressed Sequence Tag (EST) database 
search from domestic chicken. It was reported that the 
CL1 (θ GST) and CL5 (σ GST) are not detected chick 
liver purified fraction by glutathione (GSH) affinity col-
umn (Hsieh et al., 1999). Chicken GSTs protein structure 
and DNA sequence are elucidated (Chang et al., 1990; 
Liu and Tam, 1991; Liu et al., 1993). Chick embryo brain 
GSTs were purified by using glutathione CL-agarose affin-
ity column and designated them as CBI and CBII (Dasari 
et al., 2016). Based on biochemical characterization, CBI 
and CBII GSTs which related alpha (α) and mu (μ) class 
GSTs (Dasari et al., 2016).  

Kim et al. (2011) was cloned six alpha (α) class GST sub-
units of turkey were cloned and expressed in E. coli. It was 
reported that the molecular weights of expressed tGSTA 
subunits were similar to the alpha (α) class GSTs (Kim et 
al., 2010). GSTs are ubiquitous multifunctional enzymes 
and they play an important role in detoxification of pesti-
cides (Ezemonye and Tongo, 2010); carcinogens like my-
cotoxin aflatoxin B1(AFB1) (Eaton and Bammler, 1999). 
GST has catalyses the addition of glutathione (GSH) to 
endogenous xenobiotics (Satheesh et al., 2010).  

Environmental Toxic Agents and Oxidative 
Stress
That the environment is whether intentionally or unin-
tentionally loading with foreign chemical compounds (xe-
nobitics) which released by industries. But thousands of 

organic pollutants have been produced which released into 
environment from twentieth century (Helm et al., 2011). 
Many of such chemical agents are extremely stable, which 
hazard to the living organisms. That the stable organic pol-
lutants which accumulate in all ecosystems and they are 
transported by air, water and migratory species and de-
posited in too distance from the place of their production 
(Choi and Wania, 2011). 

That the oxidative stress can be characterized by either an 
oxidative burst or rapid and transient production of high 
levels of reactive oxygen species (ROS). That the oxidative 
burst can be inducing either directly by various pollutants 
or indirectly by their metabolism (Droege, 2002). Several 
mechanisms are there that the formation of oxidative stress 
by xenobiotics. That the free radicals which can readily re-
act with biomolecules.The cells have developed protection 
mechanism against oxidative stress, due to the inefficien-
cy of protection mechanism, oxidative stress can damage 
biomolecules (Zhang et al., 2004). That the biochemical 
markers which can provide information about the health 
status of an organism and this can be used as early warning 
signals of particular stress (Korte et al., 2000).

Detoxification of Exogenous Hazardous 
Agents by Gst
Glutathione S-transferases (GSTs) are detoxifying a large 
number of exogeneous toxic agents like carcinogens, drugs 
and environmental pollutants as shown in Figure 1. That 
the chemotherapeutic agents of cancer such as adria-
mycin, 1, 3-bis (2-chloroethyl)-1-nitrosourea (BCNU), 
busulfan, carmustine, chlorambucil, cis-platin, crotonylox-
ymethyl-2-cyclohexenone (COMC-6), melphalan, mito-
zantrone, thiotepa, cyclophosphamide and ethacrynic acid 
are detoxified by GSTs (Hamilton et al., 2003). Environ-
mental chemicals and their metabolites like acrolein, atra-
zine, DDT, inorganic arsenic, lindane, Malathion, methyl 
parathion, muconaldehyde and tridiphane are detoxified by 
GST isoenzymes (Abel et al., 2004a, 2004b). A large num-
ber of epoxides like fosfomycin and those derived from 
environmental carcinogens, polycyclic aromatic hydrocar-
bons (PAHs) are detoxified by GST. Activated metabolites 
N-acetoxy-PhIP of heterocyclic amine, 2-amino-1-me-
thyl-6-phennylimidazo [4, 5-b] pyridine (PhIP) which 
produced by cooking protein-rich food is also detoxified 
by cytosolic GST isoenzymes.

Activation of Xenobiotics by GST 
The conjugation reaction catalysed by GST can form less 
reactive and readily excreted products. But in some cas-
es that the glutathione (GSH) conjugate is more reactive 
than the parent compound like short chain alkyl halides 
that contain two functional groups and 1, 2-dihaloethanes, 
where the GSH conjugate rearranges to form an episulfo-
nium intermediate which responsible for DNA modifica-
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tion (Guengerich et al., 2003). The conjugation of GSH 
with the solvent dichloromethane facilitate formation of 
the highly unstable Schloromethlglutathione which capa-
ble to modify DNA (Guengerich et al., 2003; Wheeler et 
al., 2001). 

That the moderately toxic compounds like allyl-, benzyl-, 
phenethyl-isothiocyanates and sulforaphane are reversibly 
conjugated with GSH by GST to form thiocarbamates 
which spontaneously degrade to their isothiocyanates by 
releasing GSH. Again that the isothiocyanates may be tak-
en up by the cell and re-conjugated with GSH and then 
form thiocarbamate and then revert to the isothiocyanate. 
Due to this cyclic process, intracellular GSH levels are de-
creased and facilitate the distribution of isothiocyanates 
entire the body. Such isothiocyanate either low GSH con-
tent or not conjugated with GSH, but rather are more like-
ly to thiocarbalate proteins, which result in cell death (Xu 
and Thornalley, 2001). 

Detoxification of Endogenous Hazardous 
Agents by Gst
The GST isoenzymes are exhibits moderate role in lipid 
peroxidation in biological membranes. The GSTs exhibit 
non selenium glutathione peroxidase (GPx) activity with 
1-palmitoyl-2-(13-hydroperoxy-cic-9, trans-11-octadeca-
dienoyl)-L-3-phosphadylcholine, phospatidylcholine hy-
droperoxide and redusing lipid hydroperoxides which are 
in membranes (Yang et al., 2002; Li et al., 2005; Prabhu 
et al., 2004). The transferases can reduce cholesteryl hy-
droperoxides (Hamdy et al., 2003), fatty acid hydroperox-
ides, (S)-9-hydroproxy-10, 12-octodecadieonic acid and 
(S)-13-hydroperoxy-9, 11-octadecadieonic acid (Liang et 
al., 2004). That the lipid peroxidation end products like 
2-alkenals acrolein, crotonaldedyde and 4-hydroxy-2-alk-
enals are conjugate with GSH by GSTs (Liang et al., 2004). 
GSTs catalyze the GSH conjugation with cholesterol-5, 
6-oxide, epoxyeicosatrienoic acid and 9, 10-epoxystearic 
acid, which indicating its role in cellular protection against 
oxidative stress harmful electrophiles (Hayes et al., 2005). 

Birds in Polluted Environments
As shown in Figure 1, birds are victimizing to toxic agents 
by air, water and territory. It was reported that the effects 
of indirect pollution may be very common in nature than 
the direct pollution and which may affect even at lower 
contaminant levels (Eeva et al., 2003). In addition to nor-
mal metabolism during the processing of many toxic com-
pounds produce several reactive oxygen species and they 
may increase the oxidative stress in species which are live 
in polluted environments (Valko et al., 2005). Great tits are 
showed lower breeding performance with poor quality diet 
in polluted environment which suggests the importance of 
secondary environmental changes including food quality 
(Eeva et al., 2005; 2009). That the individuals which are 

living in polluted environments can exposed to a mixture 
of pollutants at sub lethal concentrations which shows syn-
ergistic, antagonistic effects. Based on oxidative potential 
and reactivity with biomolecules the hydroxyl radicals are 
the most important in biological and toxicological terms 
(Ercal et al., 2001). Little attention was paid on the func-
tion of antioxidant enzymatic system and it’s levels in dif-
ferent bird species as an indicators of oxidative stress in 
polluted environments (Berglund et al., 2007; Norte et al., 
2009; Hegseth et al., 2011). It was reported that the oxida-
tive stress may be a physiological challenge and which is a 
factor potentially affecting bird migration strategies, but it 
is not yet recognized ( Jenni-Eiermann et al., 2014).

Defensive System in Birds
Especially in birds that the detoxification efficiency is de-
pend on with diet composition (Ronis and Walker, 1989; 
Fossi et al., 1995) and sometimes it is associated with the 
metabolic rate (Ronis and Walker, 1989). Low rates of 
mitochondrial oxygen radical production and high blood 
glucose levels, which are the unique molecular mechanisms 
in birds than the other vertebrates and due to these unique 
character birds can easily defend free radicals and oxidative 
stress (Pamplona and Costantini, 2011). Recognizable at-
tention is increasing that the balancing investment in anti-
oxidant defences to sustain to oxidative damage has possi-
bly influence life history traits (Monaghan et al., 2009). It 
is suggests that the up regulation of antioxidant system in 
free flying migrants which adapt their antioxidant system 
to the sustainability to extraordinary exercise at very high 
metabolic rate ( Jenni-Eiermann et al., 2014).

Gst is a Biomarker in Birds
GSTs are useful as biomarker in ecological risk assessment 
of pesticide contaminated environment (Ezeji et al., 2012). 
It was reported that the presence of glutathione S-trns-
ferases (GSTs) activity in wild birds (Witt and Snell, 
1968). Mukthar and Bresnick (1976) said that the GST 
is an inducible enzyme. It have been identified that the 
species differences in conjugation reactions, some birds use 
ornithine instead of glycine for conjugation with xenobi-
otics (Baldwin et al., 1960), it may be due to difference 
in evolutionary scale of avian species. That the significant 
level of GST activity in hepatic and extra hepatic tissues of 
pigeons are similar to the tissues of rodent. Pigeon hepatic 
GSTs were inducted with 3-methylcholanthrene (3-MC) 
(Kumar et al., 1980).  It was reported that the various bi-
omarkers are measure different aspects of redox balance, 
which suggests the careful planning is need at the level of 
designing certain study set up (Horak and Cohan, 2010). 
Glutathione related enzymes like GPx and GST are most 
prominent biomarkers in birds (Isaksson, 2010) and eleva-
tion of those enzyme activities was reported in white stork 
(Ciconia ciconia) (Kaminski et al., 2009), the pied flycatcher 
(Berglund et al., 2007), the great tit (Isaksson et al., 2005; 
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Norte et  al., 2010). It was reported that the GST activity 
induction is an evolutionary response of cells to protect 
against metabolites and degenerative disorders which re-
lated to oxidative stress (Hayes et al., 2005; Raza, 2011).   
In Avian species, tissue distribution of GST is not similar 
to mammals; high renal specific activity is the most dis-
tinctive feature of Avian GST (Maurice et al., 1991). As 
shown in Figure 1, GST is expressed in response to both 
endogenous and exogenous toxic agents. 

Figure 1: Schematic diagram of toxic agents and 
glutathione S-tranferase (GST)

Usually, as shown in Figure 1, in normal metabolism tox-
ic agents like reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) are formed in cellular system. 
In addition to that, environments are loading with toxic 
chemical agents in the form of pesticides, insecticides, ag-
riculture related chemical formulas, industrial effluents and 
motor vehicle pollutants etc. Because of highly mobile na-
ture, birds are victimizing to these exogenous (xenobiotic) 
toxic agents by air, water and terrestrial. When the toxic 
agents enter into cellular system, they cause to oxidative 
stress in addition to deleterious effect of them. Glutathione 
S-transferse (GST) is expressed more and more to detoxify 
both endogenous and exogenous toxic insults.    

Susceptibility of Birds 
Poultry birds (domestic fowls) are victimizing to pesticide 
poisoning due to their tendency to eat pesticide contam-
inated food and other items in the environment (Ezeji et 
al., 2011). Domestic turkeys (Meleagris gallopavo) are one 
of the most susceptible species known to AFB1 (Klein et 
al., 2000; Rawal et al., 2010).  The efficiency of GST conju-
gation is a principal ‘‘rate-limiting’’ determinant for AFB1 
action in individuals and species (Ilic et al., 2010). Numer-
ous studies have demonstrated that individual and species 
susceptibility to AFB1-induced toxicity and hepatocar-
cinogenicity is strongly associated with GST-mediated 

detoxification of AFBO (Monroe and Eaton, 1988). Acute 
and chronic toxic effects of AFB1, apparently because of 
the extremely high affinity toward AFBO exhibited by 
their hepatic Alpha-class A3 subunit (Buetler et al., 1992; 
Hayes et al., 1992).

Comparative toxicology studies have shown that wild tur-
keys are substantially more resistant to AFB1 compared 
to domestic turkeys (Quist et al., 2000). But GSTs of the 
domestic turkeys have little or no AFBO affinity activity 
with AFB1 (Klein et al., 2002; 2003). Wild and heritage 
turkeys might contain potentially useful GST alleles not 
found in domestic birds (Kim et al., 2013).

Bird Gsts Specific Activity and Mutations
In pigeon, GST activity with 1-chloro-2, 4-dinitoben-
ezene (CDNB) is higher in 40 to 44 times in liver and 
kidney than with 1, 2-dichloro-4-nitrobenezene (DCNB) 
(Kumar et al., 1980). In Japanese quail, GST activity with 
CDNB and cumene hydroperoxide (CHP) elevated in 
kidney and liver than brain and lung (Dai et al., 1996). Dai 
et al. (1996) reported that both GST activity with multiple 
substrates and glutathione peroxidase (Gpx) activity with 
CHP are higher in kidney than in liver of Japanese quail 
and also Gpx activity is higher than GST activity in lung.
All recombinant GSTA and GSTM of turkey have activity 
with prototype substrates (Kim et al., 2010, 2011, 2013). 
In turkeys, GST A1-2 and GST A1-3 shows the high-
est activity with CDNB, ethacrynic acid (ECA) and CHP 
but GST A1-1 shows highest activity with DCNB (Kim 
et al., 2011). Turkey hepatic cytosol GSTAs, shows cat-
alytic activities with the GST substrates such as CDNB, 
DCNB, ECA and CHP, but with CDNB and CHP which 
appeared to be the much more (Kim et al., 2011). Turkey 
hepatic cytosol GSTA shows the least activity with 1, 2-di-
chloro-4-nitrobenzene (DCNB), which is a specific sub-
strate of mu (µ) class GST (Vanhaecke et al., 2000). 

Numerous studies have proved that the single amino acid 
site change can influence catalytic properties, substrate 
specificity and stereoselectivity of GSTs (Bammler et al., 
1995). In chickens, Lys 15 and Ser 208 of GSTA 1 are 
responsible for high specific activity and selectivity with 
ethacrynic acid (ECA) (Liu et al., 1997). Kim et al. (2011) 
suggested that the site-directed mutagenesis with molec-
ular modeling may be useful to elucidate the relative con-
tributions of specific amino acid residues to the catalytic 
function of GSTAs of turkey.

Conclusion

That the endogenous and exogenous toxic agents which 
are not benefit to the body. In addition to that they injure 
to the body if they stayed long period in the living system. 
Therefore, they should be remove by set of metabolic path-
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ways which mediated by antioxidant enzymatic system. 
Birds are frequently encountering environmental xenobi-
otic substances which have hazardous biological activity. 
GSTs are the versatile toxic agents metabolizing enzymes 
among antioxidant enzymatic system. In birds, GSTs are 
playing major role in detoxification of toxic agents and also 
act as biomarker to evaluate the health condition of birds. 
The single amino acid change can alter the GST antioxi-
dant activity. It is concluding that the GST can detoxify 
toxic agents in birds and an amino acid can change GST 
activity which leads to susceptibility of birds to various en-
vironmental toxic agents and endogenous toxic species.
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