Submit or Track your Manuscript LOG-IN

Advances in Animal and Veterinary Sciences

AAVS_9_1_63-72

 

 

Research Article

 

Effects of Different Fibre Sources in Pig Diets on Growth Performance, Gas Emissions and Slurry characteristics

 

Tran Thi Bich Ngoc1*, Tran Thi Thanh Thao1, Pham Van Dung2

1National Institute of Animal Science, Hanoi, Vietnam; 2Alliance of Bioversity International and International Center for Tropical Agriculture.

 

Abstract | The effects of different fibre sources in pig diets on growth performance, ammonia (NH3), hydrogen sulphide (H2S), greenhouse gas (GHG) emissions and slurry characteristics was studied on 20 crossbred pigs [Duroc x F1 (Landrace x Yorkshire)]. The experimental diets included one low-fibre (LF) diet without maize distiller’s dried grains with solubles (DDGS), brewer’s grain (BG) and coconut cake (CC) and 3 high-fibre (HF) diets with maize DDGS or BG or CC. The experiment was conducted according to a completely randomized design with 5 replications and lasted 62 days. In the growing period and the overall, pigs fed diets LF and HF-DDGS had higher average daily gain (ADG) compared to pigs fed diets HF-BG and HF-CC (P < 0.05), wheareas the ADG was lower for pigs fed diets HF-BG and HF-CC than for diet LF (P < 0.05) in the fattening period. There was lower FCR for diets LF and HF-DDGS than for diets HF-BG and HF-CC (P < 0.05) in both periods and overall. In the growing and fattening pigs, diets didn’t affect N and P intake, slurry DM content (%) and amount of slurry (kg/head/day), slurry P content (%DM) (P > 0.05), while N and P excretions (g/head/day) were greater for diet HF-CC than for diet LF (P < 0.05). The CO2 emission was greater for diets HF-BG and HF-CC than for diets LF and HF-DDGS (P < 0.0001) in the growing period, but not for fattening period (P > 0.05). In both periods, CH4 emission was lower in diet LF than in diet HF-BG and HF-CC (P < 0.05), while NH3 emission was higher for pigs fed diet LF than pigs fed HF-BG and HF-CC (P < 0.05). The H2S emission was not affected by diets in both periods. In conclusion, different fibre sources in pig diets may be a practical method to alter growth performance, slurry characteristics and NH3, GHG emissions.

 

Keywords | Fibre source, Emission, Growth performance, Pig diet, Slurry

 

Received | October 12, 2020; Accepted | October 20, 2020; Published | December 10, 2020

*Correspondence | Tran Thi Bich Ngoc, National Institute of Animal Science, Hanoi, Vietnam; Email: [email protected]

Citation | Ngoc TTB, Thao TTT, Dung PV (2021). Effects of different fibre sources in pig diets on growth performance, gas emissions and slurry characteristics. Adv. Anim. Vet. Sci. 9(1): 63-72.

DOI | http://dx.doi.org/10.17582/journal.aavs/2021/9.1.63.72

ISSN (Online) | 2307-8316; ISSN (Print) | 2309-3331

Copyright © 2021 Ngoc et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 

INTRODUCTION

 

In most countries, the intensive pig production has a significant impact on the environment. Pig manure is the mainly source of greenhouse gases (GHG) like methane (CH4) and carbon dioxide (CO2), and other noxious gases such as ammonia (NH3) and hydrogen sulphide (H2S). Slurry composition and gas emissions can be affected by diet compositions, such as sources and levels of fibre (Canh et al., 1998b; Jarret et al., 2012; Kerr et al., 2020; Hansen et al., 2007; Triolo et al., 2011; Beccaccia et al., 2015a), levels of protein (Canh et al., 1998a; Portejoie et al., 2004; Hernández et al., 2011) and sources of protein (Beccaccia et al., 2015b). Feed accounts approximately 70% of the cost of pork production (Iowa State University Extension, 2018), the use of by-products from food production or biofuel processing with cheap price would be recommended as a relevant economic alternative. In this study, coconut cake (CC), distiller’s dried grains with solubles (DDGS) and brewer’s grain (BG) are selected in terms of different soluble and insoluble non-starch polysaccharides (NSP) as fibrous dietary ingredient sources (Ngoc et al., 2012; Pedersen et al., 2014). These differences between fibre sources will be expected to affect the slurry composition and GHG emissions. In a previous study, Jarret et al. (2011) evaluated the effect of the incorporation of different by-products (wheat DDGS, sugar beet, and fatty rapeseed meal) on slurry composition and methane emission. They showed that the manure issued from a diet with 20% wheat DDGS produced less CH4 than expected, compared to the other diets and suggested that this could be related to the manufacturing process of wheat DDGS which requires heating processes that may be causing reactions between protein and other molecules, such as lignin, resulting in products difficult to degrade by the bacteria involved in the anaerobic digestion, in the same way as it affects the nutritional value. Therefore, this study was investigated to determine the effects of the fibrous diets containing different fibre sources on NH3, H2S, GHG emissions and pig slurry characteristics.

 

MATERIALS AND METHODS

 

The study was conducted at Thuy Phuong Pig Research Center, National Institute of Animal Science, Vietnam, from August to November 2018.

 

Experimental design, animals, diets and housing

The experimental diets (Table 1) were based on maize, soybean meal, fish meal, rice bran, maize DDGS, BG and CC. The low-fibre (LF) diets, containing around 172 g NDF/kg dry matter (DM), was formulated without maize DDGS, BG and CC as feed ingredients. The HF diets (HF-DDGS, HF-BG and HF-CC) were formulated around 217 - 245 g NDF/kg DM. All diets were formulated to meet NRC (1998) nutrient requirements [crude protein (CP), metabolizable energy (ME), calcium (Ca), phosphorus (P) and essential amino acids] (Table 2). The diets were offered in mash form.

 

A total of 20 crossbred pigs [Duroc x F1 (Landrace x Yorkshire)] from 4 litters with an equal number of males and females, with the initial body weight (BW) of 20.7±0.44 kg (around 68 days old), distributed equally into 4 treatments [LF (control), HF-DDGS, HF-BG and HF-CC] according to a completely randomized design. Each treatment composed of 5 pens, with one pig per pen as a replicate. The length of the experiment was 62 days. Before the experiment started, all pigs were vaccinated. The pigs were kept individually in concrete floored pens (1.8 m x 0.8 m) with a slatted floor at the rear in an open-sided house. There was a separate manure pit (110 cm length x 50 cm width x 40 cm depth) per pen under the slatted floor.

 

Pigs were fed 2 times per day at 08h30 and 15h30 with 4.0-5.0% of the BW. The amount of feed intake was adjusted daily according to the expected BW gain. The pigs accessed feed and water by mixing with the ratio 1:4 (w/w) and they were not given any additional water in order to prevent the effects of slurry volume, dilution and emitting area on the emission of environmental pollution causing compounds and manure characteristics. The BW of individual pig was determined at the beginning and at the end of the experimental period before the morning feeding. Feed intake was recorded on a pen basis throughout the experiment period to calculate average daily feed intake (ADFI) and feed conversion ratio (FCR).

 

Measurements and Data Collection

Measuring and calculating hydrogen sulfide and ammonia emissions: In each experimental period, after an adaptation period of 5 days, pens and slurry pits were cleaned. Subsequently feces and urine were accumulated together in the slurry pit for 26 days. At the 31st day, air samples for NH3 and H2S emission measurements were collected between 9h00 and 14h00.

 

Air samples for determining NH3 emission were collected directly from air above the slurry pits according to the method of Le et al. (2009) and with the ventilation rate of 0.5l/minute. Ammonia emission from the slurry pit was calculated with equation 1.

 

MNH3 = (CNH3 x V x 10.000) / (T x 60 x S) [1]

 

In which: MNH3=ammonia emission (mg/s/m2), CNH3=ammonia concentration (mg/mL HNO3), V=volume of HNO3 (mL), 10.000=cm/m2, T=sampling time (10 minutes), 60=s/min, S: emitting surface, 312 cm2.

 

The principle of measuring and calculating H2S emission was similar to NH3. Hydrogen sulfide emission was calculated with equation 1, in which the volume of HNO3 was replaced by that of 0.1M CdSO4. Hydrogen sulfide was trapped by Cadimi Sulfate 0.1M in the impinges.

 

 

Table 1: Feed ingredients of experimental diets (as air-dry basis)

 

Ingredients (%) LF HF-DDGS HF-BG HF-CC
Maize 63 53.2 52.04 52.2
Soybean meal 19.7 15 17.0 18.4
Fish meal 4.0 0 0 0
DDGS maize 0 25 0 0
Brewer’s grain 0 0 25 0
Coconut cake 0 0 0 25
Rice bran 10.0 0.00 0.00 0.00
Soybean oil 1.2 4 3.5 1.8
Dicalcium phosphate 0.5 1.3 0.8 0.8
Limestone meal 0.1 0.5 0.7 0.8

Premix mineral-vitamina

0.25 0.25 0.25 0.25
L-Lysine 0.05 0.25 0.21 0.23
DL-Methionine 0 0 0 0.02
Salt (NaCL) 0.5 0.5 0.5 0.5


a Content per kg of air dry diet. Vitamin A, 2000 IU; vitamin D3, 400 IU; vitamin E, 12.5 mg; vitamin K, 3 mg; vitamin B1, 2.5 mg; vitamin B12, 100 IU; Ca, 0.275 g; Cu, 27.5 mg; Fe, 25 mg; Zn, 37 mg; Co, 0.5 mg; iodine, 0.38 mg; Se, 0.11 mg.

LF, low fibre diet; HF-DDGS, high fibre diet containing maize DDGS; HF-BG containing brewer’s grain; HF-CC, containing coconut cake.

 

Table 2: Chemical compositions and nutritive values of experimental diets (as air-dry basis)

 

Criteria LF HF-DDGS HF-BG HF-CC
Dry matter (%) 89.92 90.09 90.09 90.04
Crude protein (%) 18.03 18.02 18.03 18.02
Crude fibre (%) 4.90 5.06 6.81 6.21
NDF (%) 17.21 21.73 24.47 23.67
Calcium (%) 0.62 0.61 0.60 0.59
Available phosphorus (%) 0.24 0.26 0.23 0.23
Total lysine (%) 0.97 0.93 0.95 0.96
Total Methionine+Cysteine (%) 0.58 0.58 0.57 0.54
Total threonine (%) 0.69 0.64 0.63 0.62
Total tryptophan (%) 0.23 0.19 0.22 0.23
Total NSP (%) 11.52 14.34 16.41 17.80
Soluble NSP (%) 2.73 2.98 2.55 3.33
Klason Lignin (%) 2.03 1.43 3.64 2.58
Total dietary fibre (%) 13.55 15.77 20.06 20.38
ME (Kcal/kg) 3117.85 3116.94 3121.89 3114.95


LF, low fibre diet; HF-DDGS, high fibre diet containing maize DDGS; HF-BG containing brewer’s grain; HF-CC, containing coconut cake.

 

Collection and measurement of slurry characteristics: On 28th day of each period, slurry in each slurry pit was mixed thoroughly before a sample of about 1 kg was collected. Slurry samples was kept at -200C until analysis. Slurry samples was analysed for dry matter (DM), total nitrogen (N), P and pH.

 

 

Measurement and calculation of greenhouse gas emission: The method of static chamber has been applied extensively to measure rates of trace gas emission sources (Hutchinson & Mosier, 1981; Hutchinson & Livingston, 1993; Kusa et al., 2008). It allows to detect gases emitted from a surface of a volatile solid within a known volume during a given period of time. A static chamber system was connected to a Gasmet DX-4040 Fourier Transform Infrared Multicomponent Trace Gas Analyser (FTIR; Gasmet Technologies Oy, Helsinki, Finland) to detect GHG concentrations from pig slurry. The system includes a cylindrical frame, four round cylinder bases and peripheral accessories as such sampling ports, transparent flexible plastic tubes. The gas analyser measures main GHG at low concentrations in parts per million unit per seconds (ppm/s) including CO2, CH4 and N2O. The response time of the analyser is 20 seconds for one reading and the flow speed of sample pump is 1.5 liters per minute. The gas analyzer must be calibrated with pure nitrogen (2 liters per minute speed) prior to each measurement.

 

Pig slurry samples were collected using white plastic plates with radius (r = 9.25 cm) and weighed the initial mass (450 g) using an electronic scale (Model-HY K17, 5kg) before the gas flux measurement. The GHG emissions rates were determined from linear regressions, using the goodness of fit and the significant level for model selection. Emission fluxes were computed from the slope of the linear regression between gas concentrations versus time within the container headspace (Whalen and Reeburgh, 2001). As such, fluxes were calculated from the equation is described as follow:

Eq2.PNG 

Where: F is the flux rate (mass unit/m2/h1); P is the measured ambient pressure (mbar); P0 is the standard pressure (1013.25 mbar); v is the total system volume (L), (); V is the volume occupied by 1 mol of the gas at standard temperature and pressure (STP) (0.024 m3, or 22.4 L); A is surface area of the chamber over the emission source (0.027 m2); T is the ambient temperature in degrees celsius (0C); TKelvin is the temperature T in Kelvin (K) = (273.15 + Tc); is the change in concentration in time interval t or the slope of the gas concentration curve (ppm/s); M is the molecular weight of the gas (g/mol).

 

Chemical Analysis

Dry matter (967.03), total N (984.13), ash (942.05), P and Ca were analysed according to the standard AOAC methods (Association of Official Analytical Chemist, 1990). The NDF content was analysed by the method of Van Soest et al. (1991). Amino acids were analysed by HPLC using an ion exchange column (Amino Quant, 1990). Slurry pH was determined by pH meter HI 8424 HANNA (Made in Mauritius).

 

Total, soluble and insoluble NSP and their constituent sugars were determined as alditol acetates by gas chromatography (Model: Agilent 6890N, Agilent Technologies Inc., Santa Clara, CA, USA) for neutral sugars, and by a colorimetric method for uronic acids using a modification of the Uppsala method (Theander et al., 1995), as described by Bach Knudsen (1997). Klason lignin was determined as the 12M H2SO4 insoluble residue. Total DF is the sum of Klason lignin and total NSP (T-NSP). Content of different fibre fractions were calculated as follows:

 

Cellulose = NSP glucose (12 mol/l H2SO4) - NSP glucose (2 mol/l H2SO4)

 

Total non-cellulosic polysaccharides (T-NCP) = rhamnose + fucose + arabinose + xylose + mannose + galactose + glucose + uronic acids

 

T-NSP = T-NCP + cellulose

Soluble NCP (S-NCP) = T-NCP - I-NCP

 

Data Analysis

All data were analysed using the GLM procedures of Minitab Programme Version 16.2 with the kind of 4 diet as the main factor. When P values of the F test <0.05; Tukey tests were used for pairwise comparision.

 

RESULTS

 

In the growing (20-40kg), fattening (40-70kg) periods and overall, the ADFI were similar (P > 0.05) among diets (Table 3). The final BW at the growing period and the fattening period was statisticaly significant different among diets (P < 0.05), with the higher value for the diets LF and HF-DDGS compared to the diets HF-BG and HF-CC.

 

The diet affected the ADG and FCR in both growing and fattening periods and the overal (P < 0.05). In the growing period and overall, pigs fed diets LF and HF-DDGS had higher ADG compared to pigs fed diets HF-BG and HF-CC (P < 0.05). However in the fattening period, the ADG was lower for pigs fed diets HF-BG and HF-CC than for diet LF (P <0.05), while diet HF-DDGS had similar ADG to diets LF, HF-BG and HF-CC (P > 0.05). There was lower FCR for diets LF and HF-DDGS than for diets HF-BG and HF-CC (P < 0.05) in both growing and fattening periods and the overall.

 

The nutrient intakes are shown in Table 4. In both growing and fattening periods, there were no significant differences in N and P intake (P > 0.05), while T-NSP, S-NSP and Klason lignin intake were affected by diets (P < 0.0001). The T-NSP intake was the highest value for diet HF-CC, followed in descreasing order by diets HF-BG, HF-DDGS and LF, wheares the Klason lignin was the highest for diet HF-BG, following by diets HF-CC and LF, and the lowest value for diet HF-DDGS.

 

The slurry chemical chararteristics and N, P excretion in the growing and fattening periods are presented in Table 5. In the growing period, slurry DM content (%) and amount (kg/head/day), slurry P content (%DM) did not differ among diets (P > 0.05) (Table 5). The highest pH slurry

 

Table 3: Average daily feed intake (ADFI), average daily gain (ADG) and feed conversion ratio (FCR) for experimental diets

 

  LF HF-DDGS HF-BG HF-CC SEM P
Growing period (20-40 kg)
Initial BW (kg) 20.78 20.74 20.64 20.68 0.441 0.996
Final BW (kg)

41.20a

40.90a

38.50ab

38.10b

0.682 0.009
ADG (g)

659a

650a

576b

562b

20.27 0.006
ADFI (kg) 1.48 1.50 1.49 1.45 0.045 0.815
FCR (kg feed/kg gain)

2.26a

2.31a

2.59b

2.57b

0.065 0.003
Fattening period (40-70 kg)
Initial BW (kg)

41.20a

40.90a

38.50ab

38.10b

0.682 0.009
Final BW (kg)

70.90a

70.40a

65.80b

64.90b

1.119 0.002
ADG (g)

958a

952ab

881b

864b

22.92 0.020
ADFI (kg) 2.60 2.63 2.60 2.55 0.058 0.797
FCR (kg feed/kg gain)

2.72a

2.77a

2.97b

2.95b

0.067 0.037

Overall (20-70 kg)

ADG (g)

808a

801a

728b

713b

16.33 0.001
ADFI (kg) 2.04 2.07 2.05 2.00 0.045 0.739
FCR (kg feed/kg gain)

2.53a

2.58a

2.82b

2.80b

0.045

0.001


LF, low fibre diet; HF-DDGS, high fibre diet containing maize DDGS; HF-BG containing brewer’s grain; HF-CC, containing coconut cake; BW, body weight.

 

Table 4: Average daily nutrient intake (g) for experimental diets

 

  LF HF-DDGS HF-BG HF-CC SEM P
Growing period (20-40 kg)
Nitrogen 42.81 43.36 43.10 41.69 1.304 0.812
Phosphorus 7.57 7.67 7.77 7.52 0.233 0.876
Total NSP

170.96a

215.67b

245.17c

257.39c

6.633 <0.0001
Soluble NSP

41.11bc

45.12ab

38.1c

48.15a

1.281 <0.0001
Klason Lignin

30.13a

21.51b

54.38c

37.31d

1.212 <0.0001
Fattening period (40-70 kg)
Nitrogen 75.00 75.94 75.12 73.58 1.680 0.796
Phosphorus 13.26 13.43 13.54 13.27 0.299 0.891
Total NSP

299.52a

377.72b

427.32c

454.26c

8.227 <0.0001
Soluble NSP

72.02a

79.02b

66.4a

84.98b

1.644 <0.0001
Klason Lignin

52.78a

37.67b

94.79c

65.84d

1.465

<0.0001

 

Table 5: Slurry chemical characteristics and nitrogen (N) and phosphorus (P) excretion by experimental diets

 

  LF HF-DDGS HF-BG HF-CC SEM P
Growing period (20-40 kg)
pH slurry

7.46a

7.34ab

7.26b

7.20b

0.047 0.007
Slurry DM (%) 17.29 15.46 17.07 17.79 0.592 0.067
Slurry amount (kg DM/head/day) 0.19 0.18 0.19 0.20 0.009 0.453
Slurry N (%DM)

2.92a

3.23ab

3.68ab

4.16b

0.267 0.025

Slurry P (%DM)

1.39 1.57 1.72 1.80 0.115 0.096
Excreta N (g/head/day)

5.42a

5.83a

6.81ab

8.28b

0.465 0.002
Excreta P (g/head/day)

2.55a

2.82ab

3.23ab

3.59b

0.200 0.011
Fattening period (40-70 kg)
pH slurry

6.66a

6.62a

6.41ab

6.30b

0.066 0.004
Slurry DM (%) 17.87 17.57 17.97 19.07 0.608 0.352
Slurry amount (kg DM/head/day) 0.27 0.26 0.28 0.30 0.017 0.394
Slurry N (%DM) 3.42 3.74 4.14 4.12 0.240 0.145
Slurry P (%DM)

1.32a

1.51ab

1.63ab

1.80b

0.093 0.018
Excreta N (g/head/day)

9.02a

9.74ab

11.47bc

12.17c

0.576 0.004
Excreta P (g/head/day)

3.48a

3.94a

4.55ab

5.38b

0.329

0.005


Slurry: faeces+urine

 

was observed for diet LF (7.46), followed in descending order by diet HF-DDGS (7.34), diet HF-BG (7.26) and diet HF-CC (7.20) (P < 0.05). Slurry N content (%DM) and N and P excretions (g/head/day) were similar among diets LF, HF-DDGS and HF-BG (P > 0.05), while they were greater in diet HF-CC than in diet LF (P < 0.05).

 

Similar to the growing period, in the fattening period there were no differences in slurry DM content (%) and amount (kg/head/day), slurry N content (%DM) among diets (P > 0.05) (Table 5). The pH slurry was affected by diets (P < 0.05), with the higher value for diets LF and HF-DDGS, followed by diet HF-BG and the lowest value for HF-CC. However, pigs fed diet LF showed lowest slurry P content (%DM) and N and P excretions (g/head/day), followed in decreasing order by diet HF-DDGS, diet HF-BG and HF-CC (P < 0.05).

 

In the growing period, the concentration of CO2 emission was greater for diets HF-BG and HF-CC than for diets LF and HF-DDGS (P < 0.0001) (Table 6). However, in the fattening pigs, the CO2 emission in diets HF-DDGS and HF-BG didn’t differ to diets LF and HF-CC (P > 0.05), but it was different significance between diets LF and HF-CC (P < 0.005). In both growing and fattening periods, the CH4 emission in diet HF-BG was similar to diets HF-DDGS and HF-CC (P > 0.05), whereas it was lower in diet LF than in diets HF-BG and HF-CC (P < 0.05). In the growing period, the NH3 emission was higher for pigs fed diet LF than pigs fed HF-BG and HF-CC (P < 0.05), while it was similar among diets HF-DDGS, HF-BG and HF-CC (P > 0.05). In the fattening period, the NH3 emission was lower for pigs fed diets HF-BG and HF-CC than for pigs fed diets LF and HF-DDGS (P < 0.05). The concentration of N2O and H2S emissions did not differ among diets (P > 0.05) in both growing and fattening periods.

 

DISCUSSION

 

In the current study, pigs fed diets LF and HF containing either DDGS or BG or CC had similar ADFI in both growing and fattening periods and the overall. These results are similar to earlier studies (Len et al., 2009; Ngoc and Dang, 2016) that didn’t observe differences in DM intake of pigs given LF and HF diets on the basis of rice bran, sweet potato vines, cassava residue (CR), tofu residue and CC. In contrast, Ngoc et al. (2013) showed that fibre source had an impact on mean retention time, with the shorter mean retention time of CR as compared with BG, resulting in lower DM intake for HF diet containing CR than HF diet containing BG.

 

In the growing period, pigs fed the LF and HF-DDGS diets improved ADG compared to pigs fed the HF-BG and HF-CC diet. This could be due to an association of lower T-NSP and Klason lignin intake (Table 3), thus resulting in better dietary nutrient digestibility in the LF and HF-DDGS diets. In previous studies (Högberg and Lindberg, 2004; 2006; Serena et al., 2008; Ngoc et al., 2013), source and level of dietary fibre had a pronounced effect on the site of organic mater, CP and GE digestion. The digestibility of OM, CP and GE at ileum and total tract was reduced with an increase in dietary fibre level. Besides, the total tract digestibility of OM, CP and GE was improved with an increase in the solubility of the dietary fibre fraction in the diets containing different fibre sources. In the fattening period, diet LF had higher ADG compared to diets HF-BG and HF-CC, but it was not different among diets HF-DDGS, HF-BG and HF-CC. These results indicated that apparently the animal response to diets containing different fibrous feed sources may relate to the age of animals, the older pigs can utilize fibrous diet better than younger pigs (Choct et al., 2010).

 

Diet composition had effects on nutrient digestibility and metabolism, and on the fermentation rates in the hindgut, as resulted in affecting slurry characteristics and thus gas emissions (Møller et al., 2004a,b; Dinuccio et al., 2008). Pigs showed lower N excretion for the LF diet than for the HF-CC diet in the growing and fattening periods and this result may be due to T-NSP intake was lower in the LF diet than in the HF-CC diet (Table 4). Inclusion of NSP into pig diets also shifts N excretion from urine to feces (Canh et al., 1997; Galassi et al., 2010; Heimendahl et al., 2010). Because of fecal N is less easily degraded to NH3, the inclusion of sugar beet pulp into grow-finishing diets results in a linear relationship between the NSP intake and the NH3 emission, decreasing by 5.4% for each 100g inc-

 

Table 6: Gas emissions from slurry by experimental diets

 

  LF HF-DDGS HF-BG HF-CC SEM P
Growing period (20-40 kg)

CO2 (g/h/m2)

2.62a

3.49a

5.87b

6.22b

0.277 <0.0001

CH4 (mg/h/m2)

375.56a

490.72ab

575.30bc

692.55c

34.801 <0.0001

N2O (µg/h/m2)

2.10 1.92 1.64 1.53 0.362 0.247

NH3 (mg/h/m2)

0.479a

0.439ab

0.369b

0.356b

0.0215 0.002

H2S (mg/h/m2)

0.054 0.064 0.071 0.063 0.0102 0.715

Fattening period (40-70 kg)

CO2 (g/h/m2)

2.56a

3.023ab

3.157ab

3.797b

0.225 0.003

CH4 (mg/h/m2)

364.40a

413.19ab

476.45bc

498.45c

19.58 <0.0001

N2O (µg/h/m2)

2.64 2.13 1.99 1.72 0.561 0.710

NH3 (mg/h/m2)

0.551a

0.541a

0.444b

0.420b

0.0170 <0.0001

H2S (mg/h/m2)

0.079 0.085 0.095 0.087 0.0075

0.550

 

-rease in the intake of dietary NSP (Canh et al., 1998b). Various nutritional strategies, as the inclusion of fibre sources in feeds, have been proposed in order to mitigate NH3 emission derived from manure in pig farms. Several works indicate that these effects are depending on the type of fibre used. Dietary supply of fermentable fibre also reduced faecal and slurry pH through an increase of volatile fatty acids (VFA) formation in the large intestine, thereby decreasing additionally NH3 emission (Canh et al., 1998a,b). These results were confirmed by the current study with higher slurry pH and NH3 emission for diets LF and HF-DDGS than for diet HF-BG and HF-CC. Increasing dietary fibre in pig diets is generally to decrease manure pH and NH4-N concentrations (Kerr et al., 2006, 2018; Ngoc and Dang, 2016; Trabue and Kerr, 2014; van Weelden et al., 2016), but this is not always a consistent observation (van Weelden et al., 2016). The study by Kerr et al. (2020) was no exception to this lack of consistency and the authors reported that manure from pigs fed the HF-DDGS diet had higher manure NH4-N, but no change in manure pH, compared to pigs fed the LF containing corn-soybean meal diet; while pigs fed the HF containing soybean hull diet produced a manure with similar NH4-N, but lower pH, compared to manure from pigs fed the corn-soybean meal diet. Besides, it is suggested that the use of more lignified fibre sources (e.g. oat hulls) had no influence on N partitioning (Zervas and Zijlstra, 2002; Bindelle et al., 2009); otherwise, it decreases nutrient digestibility and might then modify excreta composition and NH3 emission. Beccaccia et al. (2015a) indicated that CP digestibility was decreased when NDF in the diet was replaced with more fermentable or lignified sources of fibre led to an increase of faecal CP excretion on DM and N concentration in urine DM and a decrease of g NH3/kg slurry. In all these works, inclusion of the various types of fibre studied was parallel to an increase of dietary fibre concentration, and therefore the effects of source and level of the ingredients used were confounded.

 

Most of CH4 emissions in pigs are originated from the digestive tract and during manure storage, as a result of the degradation of organic compounds by methanogenic archaea. They will depend both on the amount and composition of organic matter excreted. Highly lignified cell wall components of feeds remain undigested and constitute the main energy substrate for CH4 production, and can also increase the excretion of other nutrients in faeces. However, cellulose and lignin have the lowest CH4 potential emissions, whereas undigested lipids and protein have the highest (Angelidaki and Sanders, 2004). In practical conditions, the inclusion of different fibre sources, such as DDGS, sugar beet pulp or rapeseed meal led to variable effects on the potential for CH4 production from faeces and the total CH4 produced per pig (Jarret et al., 2011, 2012). Thus, altering source of dietary fibre can potentially serve to manipulate CH4 emissions from slurry. The current data showed that CH4 production from slurry was higher 1.15-1.53 and 1.21-1.84 times in diets HF-BG and HF-CC compared to diets HF-DDGS and LF in both growing and fattening pigs, respectively. This result could be due to diets HF-BG and HF-CC had higher intake of total DF and other fibre components (NDF, T-NSP and Klason lignin) than diets HF-DDGS and LF, leading to more methanogens diversity (Cao et al., 2012) or abundance (Liu et al., 2012), and therefore increasing CH4 emission (Seradj et al., 2018). In the experiment done by Ngoc and Dang (2016), CH4 emitted from slurry higher for HF diet than for LF diet by from 13% to 18%. Pigs fed diet HF-CC increased CH4 emission from slurry by from 10% to 12% compared with pigs fed diet tofu residue.

 

The current data showed that CO2 production from slurry was higher 1.68-2.24 and 1.78-2.37 times in diets HF-BG and HF-CC compared to diets HF-DDGS and LF in the growing pigs, respectively. However, the emission of CO2 from feaces was observed greater 1.48 times for diet HF-CC compared to diet LF in fattening pigs. According to Ngoc and Dang (2016), fibre source and fibre level had no impact on the emission of CO2 from slurry in both growing and fattening pigs, except for the impact of fibre level on CO2 emission in the growing pigs. Philippe et al. (2015) reported the emissions of CO2 did not shown any significant difference regarding the diets LF and HF, as well for gestating sows as for fattening pigs. However, Clark et al. (2005) indicated that pigs fed diet with 20% sugar beet pulp reduced CO2 emission from slurry samples by 17% compared to 0% sugar beet pulp.

 

CONCLUSIONS

 

Different fibre sources in pig diets is a potential method to alter growth performance, slurry characteristics and NH3, GHG emissions. Diets LF and HF-DDGS had higher ADG and NH3 emission, and lower N, P excretion and CO2, CH4 emissions than diets HF-BG and HF-CC.

 

ACKNOWLEDGEMENTS

 

This study was financed by SIDA/SAREC (Swedish International Development Cooperation Agency - Department for Research Cooperation), through the regional MEKARN II program and the Swedish University of Agricultural Sciences.

 

CONFLICT OF INTEREST

 

The authors declare that they have no conflict of interest.

 

AUTHORS CONTRIBUTION

 

TTBN, the first author, designed the study, coordinated the work, analysed the data and wrote the manuscript. TTTT and PVD collected and analysed the data, and revised the manuscript. All authors read and approved the final manuscript.

 

REFERENCES

 

  • Amino Quant (1990). Amino Quant (Operator’s Handbook). HP No. 01090 90025. Hewlett Packard Company, Printed in the Federal Republic of Germany.
  • AOAC (1990). Association of Official Analytical Chemists. Official methods of analysis, 15th edition. AOAC, Arlington, USA.
  • Angelidaki I, Sanders W (2004). Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 3: 117 - 129. https://doi.org/10.1007/s11157-004-2502-3
  • Bach Knudsen KE (1997). Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol. 67: 319 - 338. https://doi.org/10.1016/S0377-8401(97)00009-6
  • Beccaccia A, Calvet S, Cerisuelo A, Ferrer P, García-Rebollar P, De Blas C (2015a). Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing-finishing pigs. I. Influence of the inclusion of two levels of orange pulp and carob meal in isofibrous diets. Anim. Feed Sci. Technol. 208: 158 - 169. https://doi.org/10.1016/j.anifeedsci.2015.07.008
  • Beccaccia A, Cerisuelo A, Calvet S, Ferrer P, Estellés F, De Blas C, García-Rebollar P (2015b). Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing pigs: II. Effect of protein source in practical diets. Anim. Feed Sci. Technol. 209: 137 - 144. https://doi.org/10.1016/j.anifeedsci.2015.07.021
  • Bindelle J, Buldgen A, Delacollette M, Wavreille J, Agneessens R, Destain JP, Leterme P (2009). Influence of source and concentrations of dietary fibre on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria. J. Anim. Sci. 87: 583 - 593. https://doi.org/10.2527/jas.2007-0717
  • Canh TT, Aarnink AJA, Schutte JB, Sutton A, Langhout DJ, Verstegen MWA (1998a). Dietary protein affects nitrogen excretion and ammoniaemission from slurry of growing finishing pigs. Livest. Prod. Sci. 56: 181-191. https://doi.org/10.1016/S0301-6226(98)00156-0
  • Canh TT, Sutton AL, Aarnink AJA, Verstegen MWA, Schrama JW, Bakker GCM (1998b). Dietary carbohydrates alter the fecal composition and pH and the ammonia emission from slurry of growing pigs. J. Anim. Sci. 76: 1887 - 1895. https://doi.org/10.2527/1998.7671887x
  • Canh TT, Verstegen MWA, Aarnink AJA, Schrama JW (1997). Influence of dietary factors on nitrogen partitioning and composition of urine and feces of fattening pigs. J. Anim. Sci. 75: 700 - 706. https://doi.org/10.2527/1997.753700x
  • Cao Z, Liao XD, Liang JB, Wu YB, Yu B (2012). Diversity of methanogens community in hindgut of grower and finisher pigs. Afri. J. Biotech. 2: 4949 - 4955.
  • Choct M, Dersjant-Li Y, McLeish J, Peisker M (2010). Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Aust J. Anim. Sci. 23(10): 1386 - 1398. https://doi.org/10.5713/ajas.2010.90222
  • Clark OG, Moehn S, Edeogu I, Price J, Leonard J (2005). Manipulation of dietary protein and non-starch polysaccharide to control swine manure emissions. J. Environ. Qual. 34: 1461 - 1466. https://doi.org/10.2134/jeq2004.0434
  • Dinuccio E, Berg W, Balsari P (2008). Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmos. Environ. 42: 2448 - 2459. https://doi.org/10.1016/j.atmosenv.2007.12.022
  • Galassi G, Colombini S, Malagutti L, Crovetto GM, Rapetti L (2010). Effects of high fibre and low protein diets on performance, digestibility, nitrogen excretion and ammonia emission in the heavy pig. Anim. Feed Sci. Technol. 161: 140 - 148. https://doi.org/10.1016/j.anifeedsci.2010.08.009
  • Hansen MJ, Chwalibog A, Tauson AH (2007). Influence of different fibre sources in diets for growing pigs on chemical composition of faeces and slurry and ammonia emission from slurry. Anim. Feed Sci. Technol. 134: 326 - 336. https://doi.org/10.1016/j.anifeedsci.2006.08.021
  • Heimendahl E, Breves G, Abel HJ (2010). Fibre-related digestive process in three different breeds of pigs. J. Anim. Sci. 88: 972 - 981. https://doi.org/10.2527/jas.2009-2370
  • Hernández F, Martínez S, López C, Megías MD, López M, Madrid J (2011). Effect of dietary crude protein levels in a commercial range, on the nitrogen balance, ammonia emission and pollutant characteristics of slurry in fattening pigs. Animal 5: 1290-1298. https://doi.org/10.1017/S1751731111000115
  • Högberg A, Lindberg JE (2004). Influence of cereal non-starch polysaccharides on digestion site and gut environment in growing pigs. Livest. Prod. Sci. 87: 121 - 130. https://doi.org/10.1016/j.livprodsci.2003.10.002
  • Högberg A, Lindberg JE (2006). The effect of level and type of cereal non-starch polysaccharides on the performance, nutrient utilization and gut environment of pigs around weaning. Anim. Feed Sci. Technol. 127: 200 - 219. https://doi.org/10.1016/j.anifeedsci.2005.09.004
  • Hutchinson G, Livingston G (1993). Use of chamber systems to measure trace gas fluxes. Agricultural ecosystem effects on trace gases and global climate change. American Society of Agronomy, Wisconsin, USA 55: 63 - 78. https://doi.org/10.2134/asaspecpub55.c4
  • Hutchinson G, Mosier A (1981). Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci. Society America J. 45: 311 - 316. https://doi.org/10.2136/sssaj1981.03615995004500020017x
  • Iowa State University Extension (2018). Estimated returns swine. Department of Economics, Iowa State University. http://www2.econ.iastate.edu/estimated-returns/.
  • Jarret G, Martinez J, Dourmad JY (2011). Effect of biofuel co-products in pig diets on the excretory patterns of N and C and on the subsequent ammonia and methane emissions from pig effluent. Animal. 5: 622 - 631. https://doi.org/10.1017/S1751731110002041
  • Jarret G, Cerisuelo A, Peu P, Martinez J, Dourmad JY (2012). Impact of pig diets with different fibre contents on the composition of excreta and their gaseous emissions and anaerobic digestion. Agric. Ecosyst. Environ. 160: 51 - 58. https://doi.org/10.1016/j.agee.2011.05.029
  • Kerr BJ, Trabue SL, Andersen DS, Van Weelden MB, Pepple LM (2020). Dietary composition and particle size effects on swine manure characteristics and gas emissions. J. Environ. Qual. https://doi.org/10.1002/jeq2.20112
  • Kerr BJ, Trabue SL, Andersen DS, Van Weelden MB, Pepple LM (2018). Impact of narasin on manure composition, microbial ecology, and gas emissions from finishing pigs fed either a corn-soybean meal or a corn-soybean meal-dried distiller’s grains with solubles diets. J. Anim. Sci. 96: 1317 - 1329. https://doi.org/10.1093/jas/sky053
  • Kerr BJ, Ziemer CJ, Trabue SL, Crouse JD, Parkin TB (2006). Manure composition as affected by dietary protein and cellulose concentration. J. Anim. Sci. 84: 1584 - 1592. https://doi.org/10.2527/2006.8461584x
  • Kusa K, Sawamoto T, Hu R, Hatano R (2008). Comparison of the closed‐chamber and gas concentration gradient methods for measurement of CO2 and N2O fluxes in two upland field soils. Soil Sci. Plant Nutri. 54: 777 - 785. https://doi.org/10.1111/j.1747-0765.2008.00292.x
  • Le PD, Aarnink AJA, Jongbloed AW (2009). Odour and ammonia emission from pig manure as affected by dietary crude protein level. Livest. Sci. 121: 267 - 274. https://doi.org/10.1016/j.livsci.2008.06.021
  • Len NT, Hong TTT, Lindberg JE, Ogle B (2009). Comparison of total tract digestibility, development of visceral organs and digestive tract of Mong Cai and Yorkshire x Landrace piglets fed diets with different fibre sources. J. Anim. Physio. Anim. Nutri. 93: 181 - 191. https://doi.org/10.1111/j.1439-0396.2007.00804.x
  • Liu C, Zhu ZP, Liu YF, Guo TJ, Dong HM (2012). Diversity and abundance of the rumen and fecal methanogens in Altay sheep native to Xinjiang and the influence of diversity on methane emissions. Arch. Microbiol. 194: 353 - 361. https://doi.org/10.1007/s00203-011-0757-y
  • Minitab (2011). Statistical software version 16.2. User’s guide to statistics. Minitab, PA, USA.
  • Møller HB, Sommer SG, Ahring BK (2004a). Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenerg. 36: 485 - 495. https://doi.org/10.1016/j.biombioe.2003.08.008
  • Møller HB, Sommer SG, Ahring BK (2004b). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. J. Environ. Qual. 33: 27 - 36. https://doi.org/10.2134/jeq2004.2700
  • Ngoc TTB, Dang PK (2016). Effect of fibre level and fibre source in the pig diets on nitrogen and phosphorus excretion, and hydrogen sulphide, ammonia and greenhouse gas emissions from slurry. J. Sci. Develop. 14(1): 119 - 129.
  • Ngoc TTB, Len NT, Lindberg JE (2013). Impact of fibre intake and fibre source on digestibility, gastro-intestinal tract development, mean retention time and growth performance of indigenous (Mong Cai) and exotic (Landrace x Yorkshire) pigs. Animal. 7 (5): 736 - 745. https://doi.org/10.1017/S1751731112002169
  • Ngoc TTB, Len NT, Lindberg JE (2012). Chemical characterization and water holding capacity of fibre-rich feedstuffs used for pigs in Vietnam. Asian-Aust. J. Anim. Sci. 25 (6): 861 - 868. https://doi.org/10.5713/ajas.2011.11294
  • NRC (1998). Nutrient requirements of swine, 10th edition. National Research Council, National Academy Press, Washington, USA.
  • Pedersen MB, Dalsgaard S, Bach Knudsen KE, Yua S, Lærke HN (2014). Compositional profile and variation of Distillers Dried Grains with Solubles from various origins with focus on non-starch polysaccharides. Anim. Feed Sci. Technol. 197: 130 - 141. https://doi.org/10.1016/j.anifeedsci.2014.07.011
  • Philippe FX, Laitat M, Wavreille J, Nicks B, Cabaraux JF (2015). Effects of a high-fibre diet on ammonia and greenhouse gas emissions from gestating sows and fattening pigs. Atmosph. Environ. 109: 197 - 204. https://doi.org/10.1016/j.atmosenv.2015.03.025
  • Portejoie S, Dourmad JY, Martinez J, Lebreton Y (2004). Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livest. Prod. Sci. 91: 45 - 55. https://doi.org/10.1016/j.livprodsci.2004.06.013
  • Seradj AR, Balcells J, Morazan H, Alvarez-Rodriguez J, Babot D, De la Fuente G (2018). The impact of reducing dietary crude protein and increasing total dietary fibre on hindgut fermentation, the methanogen community and gas emission in growing pigs. Anim. Feed Sci. Technol. 245: 54 - 66. https://doi.org/10.1016/j.anifeedsci.2018.09.005
  • Serena A, Jørgensen H, Bach Knudsen KE (2008). Digestion of carbohydrates and utilization of energy in sows fed diets with contrasting levels and physicochemical properties of dietary fibre. J. Anim. Sci. 86: 2208 - 2216. https://doi.org/10.2527/jas.2006-060
  • Theander O, Aman P, Westerlund E, Andersson R, Pettersson D (1995). Total dietary fibre determined as neutral sugar residues, uronic acid residues, and Klason lignin (The Uppsala Method): collaborative study. J. Assoc. Official Analyt. Chemists Intern. 78: 1030 -1044. https://doi.org/10.1093/jaoac/78.4.1030
  • Trabue S, Kerr BJ (2014). Emissions of greenhouse gases, ammonia, and hydrogen sulfide from pigs fed standard diets and diets supplemented with dried distillers grains with solubles. J. Environ. Qual. 43: 1176 - 1186. https://doi.org/10.2134/jeq2013.05.0207
  • Triolo JM, Sommer SG, Møller HB, Weisbjerg MR, Jiang XY (2011). A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Biores. Tech. 102(20): 9395 - 9402. https://doi.org/10.1016/j.biortech.2011.07.026
  • Van Soest PJ, Robertson JB and Lewis BA (1991). Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583 - 3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  • Van Weelden MB, Andersen DS, Kerr BJ, Trabue SL, Rosentrater KA, Pepple LM, Tdos Santos MB (2016). Impact of dietary carbohydrate and protein source and content on swine manure foaming properties. Trans. ASABE. 59: 923 - 932. https://doi.org/10.13031/trans.59.11470
  • Zervas S, Zijlstra RT (2002). Effects of dietary protein oat hull fibre on nitrogen excretion patterns and postprandial plasma urea profiles in grower pigs. J. Anim. Sci. 80: 3238 - 3246. https://doi.org/10.2527/2002.80123238x
  • Whalen SC, Reeburgh, WS (2001). Carbon monoxide consumption in upland boreal forest soils. Soil Biolo. Biochemist. 10: 1329 - 1338. https://doi.org/10.1016/S0038-0717(01)00038-4
  •  

     

     

    Advances in Animal and Veterinary Sciences

    December

    Vol. 12, Iss. 12, pp. 2301-2563

    Featuring

    Click here for more

    Subscribe Today

    Receive free updates on new articles, opportunities and benefits


    Subscribe Unsubscribe