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Abstract: Newcastle disease virus (NDV) has been used as a vector in the 

development of vaccines and gene therapy. A majority of these NDV vectors 

express only a single foreign gene through either an independent 

transcription unit (ITU) or an internal ribosomal entry site (IRES). In 

the present study, we combined the ITU and IRES methods to generate a 

novel NDV LaSota strain-based recombinant virus vectoring the red 

fluorescence protein (RFP) and the green fluorescence protein (GFP) 

genes. Biological assessments of the recombinant virus, rLS/IRES-RFP/GFP, 

showed that it was slightly attenuated in vivo, yet maintained similar 

growth dynamics and viral yields in vitro when compared to the parental 

LaSota virus. Expression of both the RFP and GFP was detected from the 

rLS/IRES-RFP/GFP virus-infected DF-1 cells by fluorescence microscopy. 

These data suggest that the rLS/IRES-RFP/GFP virus may be used as a 

multivalent vector for the development of vaccines and gene therapy 

agents. 

 

 

 

 

 



ABSTRACT 

 

Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and 

gene therapy. A majority of these NDV vectors express only a single foreign gene through either 

an independent transcription unit (ITU) or an internal ribosomal entry site (IRES). In the present 

study, we combined the ITU and IRES methods to generate a novel NDV LaSota strain-based 

recombinant virus vectoring the red fluorescence protein (RFP) and the green fluorescence 

protein (GFP) genes. Biological assessments of the recombinant virus, rLS/IRES-RFP/GFP, 

showed that it was slightly attenuated in vivo, yet maintained similar growth dynamics and viral 

yields in vitro when compared to the parental LaSota virus. Expression of both the RFP and GFP 

was detected from the rLS/IRES-RFP/GFP virus-infected DF-1 cells by fluorescence microscopy. 

These data suggest that the rLS/IRES-RFP/GFP virus may be used as a multivalent vector for the 

development of vaccines and gene therapy agents. 
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ABSTRACT 44 

 45 

Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and 46 

gene therapy. A majority of these NDV vectors express only a single foreign gene through either 47 

an independent transcription unit (ITU) or an internal ribosomal entry site (IRES). In the present 48 

study, we combined the ITU and IRES methods to generate a novel NDV LaSota strain-based 49 

recombinant virus vectoring the red fluorescence protein (RFP) and the green fluorescence 50 

protein (GFP) genes. Biological assessments of the recombinant virus, rLS/IRES-RFP/GFP, 51 

showed that it was slightly attenuated in vivo, yet maintained similar growth dynamics and viral 52 

yields in vitro when compared to the parental LaSota virus. Expression of both the RFP and GFP 53 

was detected from the rLS/IRES-RFP/GFP virus-infected DF-1 cells by fluorescence microscopy. 54 

These data suggest that the rLS/IRES-RFP/GFP virus may be used as a multivalent vector for the 55 

development of vaccines and gene therapy agents. 56 

 57 

KEYWORDS: NDV; RFP; GFP; multivalent vector; independent transcription unit; internal 58 

ribosomal entry site. 59 

 60 

 Newcastle disease virus (NDV) is an enveloped, non-segmented, negative-stranded RNA 61 

virus and has been classified as avian paramyxovirus serotype 1 (APMV-1) in the genus 62 

Avulavirus of the family Paramyxoviridae [1]. NDV is an avian pathogen that can cause local 63 

infections in humans, however, there is no current data to suggest that NDV can be transmitted 64 

human-to-human [2, 3]. The NDV genome consists of approximately 15.2 kb and contains six 65 

transcriptional units, encoding the nucleocapsid protein (NP), phosphoprotein (P), matrix protein 66 

(M), fusion protein (F), hemagglutinin-neuraminidase protein (HN), and large polymerase 67 

protein (L), in that order [4]. The genomic RNA, together with the NP, P, and L proteins, form 68 

the ribonucleoprotein complex (RNP), which serves as the active template for transcription and 69 

replication of the viral genome [5, 6]. 70 

 71 

Since reverse genetics technology was first used  to rescue infectious NDV from 72 

recombinant cDNA in 1999 [7, 8], many NDV clones have been developed and used as vectors 73 

to express foreign genes for vaccine or gene therapy purposes [9-15]. Most of these NDV vectors 74 

express only a single foreign gene from an additional independent transcription unit (ITU) that is 75 

inserted between other native viral transcription units in the NDV genome [15]. Recently we 76 
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developed a novel approach to express a foreign gene from within native viral transcription units 77 

using an internal ribosomal entry site (IRES).  In this case the red fluorescence protein (RFP) 78 

gene was expressed from a second open reading frame (ORF) located in all six native 79 

transcriptional units, separately, using an IRES [16]. The addition of the second ORF did not 80 

significantly affect viral replication, and the level of foreign gene expression could be regulated 81 

by inserting the second ORF into different native viral transcription units.  82 

 83 

In this study, we combined the ITU and IRES approaches to develop a multi-foreign gene 84 

expression vector. The NDV LaSota (LS) strain-based infectious clone, pLS/aMPV-C G [17], 85 

was used as a backbone to construct a recombinant cDNA clone containing both RFP and GFP 86 

genes (Figure 1). First, the ORF of the aMPV-C G gene in the pLS/aMPV-C G clone was 87 

replaced with the GFP ORF, amplified from the pAAV-hrGFP plasmid (Agilent Technologies, 88 

Santa Clara, CA), using an In-Fusion
®
 PCR cloning kit (Clontech, Mountain View, CA), which 89 

resulted in the pLS/GFP subclone.  Second, the RFP gene, amplified from the pCMV-Ds-Red-90 

Express plasmid (Clontech), was cloned downstream of the IRES sequence in pIRES-hrGFP-2a 91 

vector (Clontech). Finally, the IRES and the RFP ORF sequences were amplified and cloned 92 

downstream of the NDV F ORF in the pLS/GFP vector as a 2
nd

 ORF in the NDV F transcription 93 

unit using the In-Fusion
®

 PCR Cloning Kit (Clontech).  The resulting recombinant clone, 94 

designated as pLS/IRES-RFP/GFP, was amplified in Stbl2 cells at 30°C for 24 hours and 95 

purified using a QIAprep Spin Miniprep kit (Qiagen, Valencia, CA).  96 

 97 

 After co-transfection of the pLS/IRES-RFP/GFP clone and the supporting plasmids, 98 

encoding for the NDV NP, P, and L proteins, into HEp-2 cells, the rescued the LaSota strain-99 

based recombinant virus vectoring the RFP and GFP genes, designated as rLS/IRES-RFP/GFP, 100 

was subsequently amplified in SPF chicken embryonated eggs as described previously [18]. The 101 

rLS/IRES-RFP/GFP virus was purified and further propagated in SPF chicken embryonated 102 

eggs. The fidelity of the rescued rLS/IRES-RFP/GFP virus was confirmed by sequencing the 103 

isolated viral genome (data not shown). 104 

 105 

To determine if the addition of the two foreign genes, RFP and GFP, affects the viral 106 

replication and pathogenicity of the rLS/IRES-RFP/GFP virus, the hemagglutination (HA), 50% 107 
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tissue culture infectious dose (TCID50), 50% egg infective dose (EID50), mean death time 108 

(MDT), and intracerebral pathogenicity index (ICPI) were examined [19].  As shown in Table 1, 109 

the recombinant virus appears to be slightly attenuated with a lower ICPI (0.0) in day-old 110 

chickens, longer MDT (>150hs) in embryos, and greater than a half-log reduction in viral yield 111 

in DF-1 cells compared to the parental LaSota strain. The viral yields of the recombinant virus 112 

grown in embryonated eggs, measured by EID50 and HA, were comparable to the yields of the 113 

parental LaSota strain (Table 1). Overall, the replication rate of rLS/IRES-RFP/GFP appears to 114 

be similar when compared to the replication rate of LaSota in DF-1 cells (Fig. 2).  115 

 116 

 The co-expression of the RFP and GFP proteins from rLS/ IRES-RFP/GFP infected DF-1 117 

cells at 24 h post-infection was examined by fluorescence microscopy at 100 x magnification 118 

(Nikon, Eclipse Ti, Melville, NY) [17].  As shown in Fig. 3, both GFP (Fig. 3b) and RFP (Fig. 119 

3c) expression was observed. After merging both fluorescent images (Fig.3d), GFP and RFP co-120 

localized to the same infected cells as seen by NDV induced viral cytopathic effects (CPE) 121 

observed under bright field (Fig. 3a).  It is notable that there are a few infected cells that express 122 

GFP but not RFP that most likely can be attributed to the different promoters that drive the 123 

expression of the reporter genes.  The GFP gene is inserted into the NDV genome as its own ITU 124 

and therefore should be expressed readily.  However, the RFP gene is inserted as a second ORF 125 

downstream of an IRES inside a native transcription unit.  The expression of a foreign gene from 126 

an IRES appears to be slightly inconsistent as several cells expressing GFP but not RFP can be 127 

seen. 128 

 129 

Several NDV based recombinant viruses expressing a foreign gene have been devloped and 130 

evaluated as vaccine candidates in clinical trials resulting in varying levels of the host’s immune 131 

response and protection against the targeted pathogen [17, 20-31]. Although the host’s response 132 

to vaccination and, ultimately, a protective immunity is influenced by many factors, antigenicity 133 

and expression efficiency of the foreign antigen are undoubtedly the most important.  In most 134 

reported NDV vaccine candidates, the recombinant vectors only express one foreign gene 135 

through an independent transcription unit. The insufficient immune response and lack of 136 

protection against a targeted pathogen conferred by these vectored vaccine candidates suggest 137 

that a single antigen from the pathogen or its expression level from the vector may not be 138 
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adequate. Alternatively, two or more antigenic components from a pathogen may be required to 139 

achieve an improved or complete protection against challenge of said pathogen [32-34]. In this 140 

study, we have shown that it is possible to express two foreign genes simultaneously from a 141 

single vector that could be used to deliver the necessary antigenic components from one 142 

pathogen to induce a stronger immune response and improve the protective efficacy.    143 

Studies that express two foreign genes from a single NDV vector to be used as experimental 144 

vaccine candidates have been developed resulting in observed improvements in protective 145 

efficacy against pathogenic challenge [33-35]. However, these foreign antigens were expressed 146 

through two additional ITUs in the NDV genome. Previous studies  have demonstrated that the 147 

addition of an ITU in the viral genome downregulates viral gene transcription downstream of the 148 

inserted ITU that may subsequently attenuate viral replication and pathogenicity and, ultimately, 149 

decrease foreign gene expression [36-40]. Whereas, the NDV vector developed in this study 150 

expresses one foreign gene through an additional ITU and the other through an IRES as a second 151 

ORF within a native transcription unit, which usually does not notably affect viral replication 152 

efficiency [16]. More importantly, expression of the second foreign gene, downstream of an 153 

IRES, could be regulated by selecting an insertion site in the NDV genome relative to the desired 154 

expression level to meet the needs of multivalent vaccines and anticancer therapy [16]. 155 

Multivalent vaccination is the preferred practice in the poultry industry to protect the birds 156 

from common infectious diseases with little handling as possible.  One of the advantages in 157 

administering multivalent vaccines is the reduction in vaccination costs, especially for large 158 

producers. However, a general concern is that the combination of  live-recombinant vaccines 159 

with live-attenuated viruses may interfere with the other’s replication in the host and compromise 160 

protective efficacy [41, 42]. The NDV vector developed in this study containing two foreign 161 

genes could express viral antigens from two different pathogens and be used as a trivalent 162 

vaccine against NDV and the other two targeted diseases. In this case, this trivalent vaccine is 163 

one isolated replicating virus population with regulated foreign gene expression that should not 164 

interfere with itself nor induction of the host’s immune response [43].  165 

Several NDV based recombinant vectors expressing cytokines or anticancer factors have 166 

been evaluated as anticancer agents in tumor models [44-49]. Again, most of these NDV 167 

recombinant vectors express only a single cytokine or anticancer factor and varying levels of 168 
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therapeutic effects were achieved in clinical trials. It would be interesting if a combination of two 169 

or more cytokines or anticancer factors expressed from a single NDV vector, through the ITU 170 

and IRES approaches, improved the efficacy of potential anticancer therapies. 171 

 In summary, we developed a novel NDV vector co-expressing the GFP and RFP 172 

reporters through a combination of the ITU and IRES approaches in this study. The recombinant 173 

NDV vectoring the two foreign genes was slightly attenuated when compared to its parental 174 

virus. There was no discernible interference with viral replication rates or expression of the two 175 

foreign genes. Our results suggest that the NDV LaSota strain-based two-foreign gene 176 

expression vector is reliable and may be used in the development of multivalent vaccines against 177 

veterinary viral diseases, and may also have potential applications in human and veterinary gene 178 

therapy or anticancer treatments. 179 
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Table 1. Biological assessments of the rLS/IRES-RFP/GFP and parental 

LaSota viruses 

Virus MDT
a
 ICPI

b
 HA

c
 EID50

d
 TCID50

e
 

LaSota  110hs  0.15 1024 2.37×10
9
 9.88×10

8
  

rLS/IRES-RFP/GFP  >150hs 0 512 2.37×10
9
 1.76×10

8
 

      

a MDT: Mean death time assay in embryonated chicken eggs. 
b ICPI: Intracerebral pathogenicity index assay in day-old chickens. 
c HA: Hemagglutination assay. 
d EID50: 50% egg infective dose assay in embryonated chicken eggs. 
e TCID50: 50% tissue infectious dose assay in DF-1 cells. 

 

Tables



 
 

Fig. 1. Schematic representation of pLS/IRES-RFP/GFP construction. The ORF of the aMPV-C 

G gene in the pLS/aMPV-C G clone was replaced with the GFP ORF, amplified from the 

pAAV-hrGFP plasmid (Agilent Technologies, Santa Clara, CA), using an In-Fusion® PCR 

cloning kit (Clontech, Mountain View, CA), resulting in a subclone pLS/GFP.  The RFP ORF, 

amplified from the plasmid pCMV-Ds-Red-Express (Clontech), was cloned downstream of the 

IRES sequence in the pIRES-hrGFP-2a vector (Clontech). Subsequently, the IRES and the RFP 

ORF sequences were amplified and cloned downstream of the NDV F ORF in the pLS/GFP 

vector using an In-Fusion® PCR Cloning Kit (Clontech). The NDV Gene End and Gene Start 

signal sequences and the RFP and GFP sequences are underlined. The direction of the T7 

promoter is indicated by a bold black arrow. HDVRz and T7Φ represent the site of the Hepatitis 

delta virus ribozyme and the T7 terminator sequences, respectively. 
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Fig. 2.  Growth curve analysis comparing the viral replication of the rLS/IRES-RFP/GFP and 

parental LaSota viruses. DF-1 cells were infected with each virus separately at an MOI of 0.01. 

Every 12 h post-infection, virus lysates were harvested and subsequently, viral titers were 

determined by TCID50 titration for each time point in DF-1 cells in triplicate. The mean titer of 

each time point of the two viruses is expressed in log10 TCID50/ml.  
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Fig. 3.  Detection of RFP and GFP protein expression of the rLS/IRES-RFP/GFP virus by 

fluorescence microscopy. DF-1 cells were infected with rLS/IRES-RFP-GFP at an MOI of 0.01. 

At 24 h post-infection, infected cells were examined and viral CPE and corresponding 

fluorescence from the same field were digitally photographed at 100X magnifications with bright 

field (a) and GFP (b) and RFP (c) specific filter combinations (Nikon, Eclipse Ti, Melville, NY). 

The green and red fluorescent images (b and c) were merged (d).  
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