Join Us  |   Create Account  |   Login  |   Site Map

Biopestides: Innovations and Practices

Publisher: Smith and Franklin Books in Biosciences

Editor(s)/Author(s): Dr. K. Sahayaraj and Dr. P. Selvaraj

Publication date: Sat, 21 Jan 2017

ISBN: 978-1-9164009-1-7

Soft Copy Price: GBP 150.00

Pages: 271

 
Download Book Flyer Request Invoice
Buy Biopestides: Innovations and Practices

Soft Copy: £150.00

Buy
 

Section A: Entomopathogens for Insect Pest Management

 

Chapter 1. Biotechnological options for the management of insect in agriculture P. Selvaraj and K. Sahayaraj, St. Xavier’s College, Palayamkottai-627002, Tamil Nadu, India

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter1

Abstract
Keywords
1.1.Introduction
1.2. Botanical formulations and target pests
1.2.1 Commercial products
1.2.3. Vegetable arthropod pests
1.2.4. Fruit crops
1.2.5. Greenhouse applications
1.3. Zooid pesticides
1.4. Entomopathogens
1.4.1. Trade names 1.4.1.1.Bacteria
1.4.1.2. Viruses
1.4.1.3. Fungi 1.5. Insect natural enemies
1.6. Post-harvest
1.7. Semiochemicals and target pests
1.8. Transgenic crops
1.10.Advantages of using Biopesticides
1.11.Limitations
1.12.Conclusion and future recommendations
1.13.References

Chapter 2. Bioprotectant with multifunctional microorganisms: A new dimension in plant protection
Lalithakumari Janarthanam

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter2

Abstract
Keywords
2.1.Introduction
2.2. Methodology followed
2.2.1.14S rRNA Gene Ampli cation, Sequencing, and Analysis
2.2.2. Construction of multifunctional microbial formulation
2.2.3. Test for root nodulation in selected leguminous plants.-Growth tubes
2.2.4. Green House experiments
2.3. Observations and discussions
2.3.1. Rhizobial as well as the non-rhizobial
2.3.2. Bacterial-bacterial combinations and bacterial-fungal combinations
2.3.3.. Nodulation efficiency
2.3.4. Screen house findings
2.3.4.1.Corn
2.3.4.2.Peanut
2.3.4.3.Soybean
2.3.4.4.SumaGrow-F2 a free-living nitrogen fixers and biocontrol agents
2.4. Conclusion
2.5. References

Chapter 3. Growth kinetics and pathogenicity of Paecilomyces fumosoroseus isolates against Be- misia tabaci Grennadius (Homoptera:Aleyrodidae)
J. S. Matthew and A. Khan

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter3

Abstract
Keywords
3.1.Introduction
3.1.1. White y
3.1.2. Biocontrol agents for White
3.1.2.1. Natural enemies
3.1.2.2. Paecilomyces fumosoroseus
3.1.2.3. Paecilomyces fumosoroseus effcacy modulation
3.2. Preparation and application of entomopathogenic fungus
3.2.1. Fungal Isolation
3.2.2.Effect of temperature on in vitro radial colony growth of P. fumosoroseus 3.2.3.Effect of temperature on pathogenicity of P. fumosoroseus on B. tabaci adults
3.3. Entomopathogenic fungus impacts against B. tabaci
3.3.1. Growth and germination
3.3.2. LC50 values for B. tabaci at different locality and temperatures
3.4. Conclusion
3.5. References

Chapter 4: Efficacy of Entomopathogenic Fungi on Lesser Grain Borer, Rhyzopertha dominica (Fab.)
P. Jyothi and N. Sambasiva Rao

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter4

Abstract
Keywords
4.1.Introduction
4.1.1.Paddy post-harvest pests
4.1.2.Lesser grain borer (Rhyzopertha dominica)
4.1.3. Management
4.1.3.1. Insecticides
4.1.3.2. Recent recommendations 4.1.3.3. Microbes
4.2.Uses of Fungi
4.2.1. Preparation of fungal formulation
4.2.2. Grain treatment with fungal formulation
4.2.3.Collection and rearing of the test insect
4.3. Observations and discussions
4.3.1. Effect on adults released
4.3.2. Effect on progeny build-up
4.3.3. Effect on per cent weight loss
4.4.References

Chapter 5: Application of nematodes for insect pest management K. Sankari Meena and E. I. Jonathan

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter5

Abstract
Keywords
5.1.Introduction
5.1.Entomopathogenic nematodes
5.2.Taxonomic position
5.3.Life cycle of EPN
5.4.Survival of nematode juveniles
5.5.Foraging strategies of EPN
5.6.Attributes of EPN as biocontrol agent against insect pests
5.7.Distribution of EPN
5.8.Biocontrol potential of EPN
5.9.Mass production of EPN
5.10.Factors a ecting the application of EPN
5.11. Application of EPN
5.12.Commercial products of EPN
5.13.Application Rates
5.14.Conclusion
5.15. References

Section B: Botanicals in Pest Management

 

Chapter 6: Green chemicals natural laboratories of sustainable agriculture and ecosystem C. Rettinassababady, R. Renuka and C. Jeyalakshmi

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter6

Abstract
Keywords
6.1.Introduction
6.2.Advantages of Green adjuvants,
6.3.Antimicrobial secondary metabolites of green adjuvants
6.4.Methods of preparation of plant extract
6.4.1.Plant material
6.4.2.Selection of solvents for extraction
6.4.3.Extraction methods
6.5.Experimental methods for evaluation of e cacy of green adjuvants
6.6.Role of volatile and essential oils as Green adjuvants,
6.7 Synthesis of Bio-nanoparticles using plant extract,
6.8. Green adjuvants as Antiviral principles (AVP),
6.9. Limitations of green adjuvants
6.10. Conclusion
6.11.References

Chapter 7: Phytochemical extraction and screening
P.Selvaraj

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter7

Abstract
Keywords
7.1.Introduction
7.1. 0. Class of Phytochemicals
7.1.1. Alkaloids
7.1.2. Glycosides
7.1.3. Flavonoids
7.1.4. Phenolics
7.1.5. Saponins
7.1.6. Tannins
7.1.7.Terpenes
7.1.8. Anthraquinones
7.1.9. Essential oils
7.1.10. Steroids
7.2.Phytochemical extraction
17.2.1. Plant material
7.3. Methods of extraction
7.5.Phytochemical screening
7.3.1. Extraction procedures
7.4. Phytochemical screening
7.5. Phytochemical estimation
7.5. 1.Alkaloids
7.5. 2.Flavanoids
7.5. 3.Phenols
7.5. 4.Saponins
7.5. 5.Tannins
7.5. 6.Oils
7.5. 7.Essential oils
7.5. 8.Lipids
7.6.Separation procedures
7.7.1.Column chromatography:
7.7.2. in layer chromatography
7.8. Identifications
7.8.1.UV-Viz. Spectrophotometer
7.8.2.Gas Chromatography– Mass Spectrum analysis and identification of compounds
7.9.Bioactivity of phytochemicals
7.10.Conclusion
7.11. References

Chapter 8: Medicinal plants: promising tool for the management of postharvest insect pests of maize.
P. Lakshmi Soujanya, J.C. Sekhar and P. Kumar

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter8

Abstract
Keywords
8.1.Introduction
8.1.1.Rrice weevil
8.1.2.Rrice weevil management
8.2.Botanicals for rice weevil management
8.2.1.Insect Maintenance
8.2.2.Plant material preparation and treatments
8.2.3.Data Analysis
8.3.Phytochemistry Ageratum
8.4. Mortality and Progeny Emergence due to Ageratum treatment 8.5. Ageratum treatment and grain damage
8.6. Ageratum treatment and Grain weight loss
8.7. Conclusion and Future Trends
8.8. References

Chapter 9: Reproductive toxicity of botanicals on insects
K. Sumangala Bhat, K. Vivek

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter9

Abstract
Keywords
9.1.Introduction
9.2.Materials and Methods
9.2.1.Ovicidal activity
9.2.2.Larvicidal activity
9.2.3.Oviposition-deterrent activity
9.2.4.Chemosterilant activity
9.2.5.Mode of action of test sample on insects
9.2.6.Mitochondrial preparation
9.2.7.Mitochondrial enzyme inhibition studies
9.2.8.Determination of protein content
9.3.Results
9.3.1. Ovicidal activity
9.3.2. Larvicidal activity
9.3.3. Oviposition-deterrent activity
9.3.4. Chemosterilant activity
9.3.5. Mitochondrial enzyme inhibition
9.4.Discussion 9.5.Conclusion
9.6.References

Chapter 10. Biological Efficacy of Amaranthus viridis L. leaf extracts against certain agricultural pests and pytopathogens
Pathipati Usha Rani, Yarramreddy Manjunatha and R. S Prkasham

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter10

Abstract
Keywords
10.1.Introduction
10.1.Plant bioactive compounds
10.1.2.Isect treats in agriculture
10.1.3. Amaranthus viridis
10.1.4. Pestiferous insects
10.2.Biological Efficacy of Amaranthus viridis L. leaf extracts
10.2.1.Collection and extraction of Plant material
10.2.2.Test insects
10.2.3.Microbial strains
10.3.Antifeedant activity of Amaranthus viridis to Lepidopteran pests 10.4.Amaranthus viridis e ects on insect growth
10.5. Fumigation activity of Amaranthus viridis stored pests
10.6.Antibacterial activity of the Amaranthus viridis leaf extract
10.7.Conclusion
10.8.References

Chapter 11. Bioactivity of Alstonia boonei De Wild Leaf Alkaloid on the Growth and Develop- ment of Maruca vitrata Fabricius.
O. Nathaniel Oigiangbe, M. Tamo and I. Benjamin Igbinosa O. Nathaniel Oigiangbe, M. Tamo and I. Benjamin Igbinosa

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter11

Abstract
Keywords
11.1.Introduction
11.1.1.Legme pod borers
11.1.2. Maruca vitrata management
11.1.3. Alstonia boonei
11.1.4. Objective
11.2.1.Processing of Plant materials
11.2.2. Incorporation of alkaloids
11.2.3. Data Analysis
11.3.1. Larval survival
11.3.2. Growth and development
11.4.Conclusion and Future focus
11.5. References

Chapter 12. Insecticidal activity of the Murraya paniculata
Yan ping Luo

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter12

Abstract
Keywords
12.1 Introduction
12.2 Preparation of M. paniculata extract
12.2.1 Materials and Methods
12.2.1.1 Materials
12.2.1.2 Preparation of M. paniculata crude extract
12.2.1.2.1 Percolation method
12.2.1.2.2 Ultrasonic extraction method
12.2.1.2.3 Re ux extraction method
12.2.1.2.4 Soxhlet extraction method
12.2.1.2.5 Supercritical CO2 extraction method
12.2.1.3 Preparation of M. paniculata extract
12.2.1.3.1 Petroleum ether extract
12.2.1.3.2 Chloroform extract
12.2.1.3.3 Ethyl acetate extract
12.2.1.3.4 n-Butyl alcohol extract
12.2.1.4 Preparation of M. paniculata chromatography fraction
12.2.2 Results and Discussion
12.2.2.1 Extraction methods of M. paniculata
12.2.2.2 M. paniculata extract
12.2.2.3 M. paniculata chromatography fractions
12.3 Insecticidal activity of M. paniculata
12.3.1 Materials and Methods
12.3.1.1Testing insects
12.3.1.2 Test agent and equipment
12.3.1.3 Determination of contact activity of the M. paniculata extract against Musca domestica
12.3.1.4 Determination of contact activity of M. paniculata extract against Radish aphids
12.3.1.5 Determination of contact activity of the M. paniculata extract against Predenia liture
12.3.1.6 Determination of insecticidal activity of M. paniculata extracts against Brontispa longissima
12.3.2 Results and Discussion
12.3.2.1 Contact activity of M. paniculata extracts against house y
12.3.2.2 Contact activity of M. paniculata extracts against L.erysimi
12.3.2.3 Contact activity of M. paniculata extracts against P. liture
12.3.2.4 Insecticidal activities of M. paniculata against B. longissima
12.3.2.5 Determination of the toxicity of chloroform extract on pests
12.3.2.6 Insecticidal activity of chromatographic fractions from the chloroform extract
12.3.2.7 Field test of total avonoids from M. paniculata
12.3.3 Discussion
12.3.4 Acknowledgments
12.4. References

Chapter 13. Fumigant toxicity of limonene and linalool for pulse beetle, Callosobruchus chinensis (L.) management
M. Moshre , K. Ahmadi, A. Purhematy, F. Shari far

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter13

Abstract
Keywords
13.1.Introduction
12.1.1. Synthetic insecticides and their consequences
12.1.2. Aromatic plants in pest control
12.1.3. Callosobruchus chinensis
12.1.4. 12.1.4. Limonene / Linalool in pest control
13.2. Materials and Methods
12.2.1.Insect rearing
12.2.2. Fumigant Bioassay
12.2.3. Statistical analysis
12.3. Results and discussion:
12.3. 1. Fumigant toxicity for limonene and linalool
12.4. Conclusion
12.5. Reference

Section C: Natural Enemies

 

Chapter 14. Cryptolaemus montrouzieri Mulsant –an important predator of mealybugs S.G. Dumaniya, M.R. Siddhapara and I.B. Kapadiya

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter14

Abstract
Keywords
14.1.Introduction
14.1.1. Mealybugs
14.1.2. Host plants of Mealybug
14.1.3. Biology of Mealybug
14.1.4. Mode of transport of mealybug
14.1.5. Why Biological control?
14.1.6. Cryptolaemus montrouzieri Mulsantfor mealybug management
14.2. Methodology followed
14.2.1. Biology of C. montrouzieri
14.2.1.1. Maintenance of C. montrouzieri on P. solenopsis
14.2.1.2. Observations
14.2.2. Predatory potential of C. montrouzieri
14.3. Results and discussion
14.3.1. Biology of C. montrouzieri
14.3.1.1. Eggs
14.3.1.2. Larva
14.3.1.3. Pupa
14.3.1.4. Adults
14.3.2. Predatory potential of C. montrouzieri
14.3.2.1. Larva
14.3.2.2. Adult
14.4. Use of C. montrouzierias biocontrol agent
14.5. Natural enemies of C. montrouzieri
14.6. Interaction of C. montrouzieri with parasitoids and other natural enemies

14.7. Conclusions
14.8. Reference

Chapter 15. Studies on egg parasitoids of Helopeltis spp. (Hemiptera: Miridae) K.K. Srikumar1, P.S.Bhat, T.N. Raviprasad, K. Rajmohana and K. Vanitha

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter15

Abstract
Keywords
15.1.Introduction
15.1.1. Tea mosquito bug (TMB) (Helopeltis spp.)
15.1.2. Helopeltis spp. In cashew
15.1.3. Management practice
15.1.3.1. Predator
15.1.3.2. Parasitoid
15.1.3. 3.Pathogens
15.1.3.4. Use of botanicals
15.1.3. 5. Use of sex pheromone
15.1.4. Objectives
15.2. Distribution
15.2.1. Survey
15.2.2. Abiotic factors recorded
15.2.3. Egg parasitoids population
15.2.4. Parasitism and cropping seasons
15.3. Laboratory experimenters
15.3.1. Behaviours of Telenomus sp.
15.3.2. Biological traits
15.4. References

Chapter 16. Zygogramma bicolorata Pallister- A potential bio agent of Parthenium hysterophorus L.
M.R. Siddhapara, I.B. Kapadiya and J.R. Talaviya

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter16

Abstract
Keywords
16.1. Introduction
16.1.1. Weed Plants in India
16.1.2. Parthenium hysterophorus a nocuous weed
16.1.3. Biological Control over Parthenium hysterophorus
16.1.4. Current status of distribution and Impact of Z. bicolorata in India
16.1.5. Host range of Z. bicolorata
16.2. Biology of Zygogramma bicolorata Pallister
16.2.1. Maintenance of Z. bicolorata on P. hysterophorus
16.2.2. Experimentation
16.2.2.1. Egg
16. 2.2.2. Larva
16. 2.2.3. Pupa
16. 2.2.4. Adult
16.3. Bioefficacy
16.3.1. Evaluation of feeding Potential of Z. bicolorata
16.3.2. Observation of Feeding potential of Z. bicolorata on P. hysterophorus
16.4. Can Z. bicolorata harmful to other crops?
16.5. How many beetles should be released?
16.6. Conclusions
16.7. References

Chapter 17. Economics of Cabbage Production in Riyom Local Government Area of Plateau State, Nigeria
S.A. Jibril, H.A. Bala, M. Buenkwap and S. Abdullahi

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter17

Abstract
Keywords
17.1. Introduction
17.1.1. Cabbage (Brassica Oleracea)
17.1.2. Cabbage production
17.1.3. Economics of cabbage production
17.2. Methodology
17.2.1. Study area and climatic conditions
17.2.2. Observations
17.2.3. Statistical analysis
17.3. Results and Discussion
17.3.1. Socio-economic characteristics of cabbage producers
17.3.2. Costs and returns associated with cabbage production
17.3.3. Multiple regression analysis
17.3.4. Constraints to cabbage production
17.4. Conclusion
17.5. References

Chapter 18. Biopesticides and Botanical Insecticides Application, Sudan Maymoona A. Eisa, and Wail M. Haroon

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter18

Abstract
Keywords
18.1. Introduction
18.2. Pesticides and their consequences
15.2.2. Botanical biopesticides
15.2.3. Contribution of Metarhizium
18.3. Methods adapted
18.4. Results and discussion
18.5. Conclusion and future directions
18.6. References

Chapter 19. Integrated Disease Management of Fusarium wilt of chickpea with biopesticides Y.S. Mailem, Bharati N. Bhat and V. Krishna Rao

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter19

Abstract
Keywords
19.1. Introduction
19.1.1. Chickpea in world and also in India
19.1.2. Phytopathogens in Chickpea
19.1.3. Fusarium wilt in Chickpea
19.1.4. Biological control of phytopathogens
19.1.5. Aim of the study
19.2. Evaluation of seed dressing fungicides
19.3. Evaluation with botanicals
19.4. Evaluation with biocontrol agents
19.4.1. Antagonistic activity
19.5. Management studies under glass house conditions
19.5.1. Wilt incidence
19.6 Conclusion
19.7. References

Section D: Bionanomaterials and Innovative Methods

 

Chapter 20. Synthesis, Characterization and applications of bionanomaterials with spherical refer- ence to pest management
Badal Kumar Mandal and H A Kiran Kumar

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter20

Abstract
Keywords
20.1.Introduction
20.1.1.Synthesis of bionanomaterials
20.2. Characterization of nanoparticles
20.2.1. UV – Vis spectroscopy
20.2.1.1. Principle
20.2.1.2. Application in bionanomaterials characterization
20.2.2. Transmission electron microscopy
20.2.2. 1. Components of TEM
20.2.2. 2. Applications
20.2.3. Scanning electron microscopy
20.2.3.1. Components
20.2.3. 2. Applications
20.2.3. 3. Applications of SEM in bionanomaterials characterization
20.2.4. Atomic force microscopy
20.2.5. X – Ray di raction (powder/single crystal)
20.2.5. 1. XRD - powder di raction
20.2.5. 2. XRD - powder di raction
20.2.6. Fourier transformed infrared spectroscopy
20.2.7. Particle size analysis
20.2.8. X – Ray photoelectron spectroscopy
20.3. General Applications
20.3. 1.Nanopesticides
20.3. 2. Validamycin

20.3. 3. Polyethylene glycol-coated nanoparticles for pest management
20.3. 4. Metallic Nanoparticles for pest management
20.4. Conclusions
20.5. References

Chapter 21. Pesticidal-bioassay for bio-nanomaterials

K. Sahayaraj

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter21

Abstract
Keywords
21.1. Introduction
21.1.1. What type of plants can be utilized for pest management?
21.1.2. Plant collection
21.1.3. Extraction
21.2. Biogenesis of nanomaterials
21.3. Characterization of silver nanoparticles
21.3. 1. UV-Vis spectroscopy analysis
21.3. 2. Size and shape of Bio-NPs were done using TEM and SEM analysis.
21.3.3. FT-IR vibration
21.3.4. XRD measurement
21.4. Nano-materials in pest management
21.5. Bioassay methods
21.5.1. Collection and Maintenance of species of Pests
21.5.2. Walking Activity Bioassay
21.5.3. Deterrent activity using olfactometer
21.5.4. Antifeedant activity
21.5.5. Leaf-dip method
21.5.6. Insect cell line bioassay
21.5.7. Micro-Injection Bioassay
21.5.8. By arti cial diets for sucking type of mothparts
21.5.9. Direct contact bioassay
21.5.10. Oviposition Choice Tests in Laboratory
21.5. 11. Ovicidal activity
21.6.Statistical evaluation
21.7.Advantages and disadvantages
21.8 References

Chapter 22. Designing Nanomaterials and Nanocomposites for the Management of Weeds and Herbicide Residue
C.R.Chinnamuthu

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter22

Abstract
Keywords
22.1. Introduction
22.1.1. Existing management options of weeds
22.1.1.1. Manual method
22.1.1.2. Mechanical method
22.1.1.3. Chemical method
22.2. Application of Nanotechnology to manage problem weeds
22.3. Nano-herbicides to exhaust the weed seed bank
22.4. Nano-herbicides to eradicate the perennial weed
22.5. Developing nanoherbicides molecule targeting the new domain
22.6. Developing smart delivery mechanism to the targeted site
22.7. Nanoherbicides for rainfed Agriculture
22.8. Nanoherbicides for season long weed control
22.9. Detoxi cation herbicide residue
22.10. Synthesis of Template for Loading Herbicide Active Ingredient for Control
22.11. Procedure
22.12. Future focus
22.13. Conclusion
22.14. References

Chapter 23. Agro nanomaterials: past and present scenarios
T. Seenivasagan and K. Sahayaraj

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter23

Abstract
Keywords
23.1. Nanomaterials
23.2. Nanomaterials Pesticide determination
23.3. Pesticide absorption / destruction
23.4. Controlled release of pesticide delivery
23.5. Crop growth induction
23.6. Pestiferous insect’s management
23.7. Post-harvest pest management
23.8. Nanocomposites
23.9. Conclusions
23.10. References

Chapter 24. Changing scenario of insect pests and research priority on pest management in Cotton
Murugesan, N. and K. Elanchezhyan

DOI: http://dx.doi.org/10.17582/books.Biopestides/2017.chapter24

Abstract
Keywords
24.1. Introduction
24.2. Pre Transgenic Cotton (Bt cotton) Era
24.3. Adoptable Srivilliputtur IPM module (ASIPM)- Components
24.4. Post Transgenic Cotton (Bt cotton) Era
2.5. Conclusion
2.6 .References