Submit or Track your Manuscript LOG-IN
Latest Blogs: https://researcherslinks.com/en/kahoot-login/ https://researcherslinks.com/en/blooket-login/ https://researcherslinks.com/en/comcast-login/ https://researcherslinks.com/en/gimkit-login/

Evaluation of Advanced Chickpea (Cicer arietinum L.) Genotypes for Yield and Resistance to Pod Borer (Helicoverpa armigera L.)

Evaluation of Advanced Chickpea (Cicer arietinum L.) Genotypes for Yield and Resistance to Pod Borer (Helicoverpa armigera L.)

Hamid Ullah Khan1*, Muhammad Anas1*, Rozina Gul1, Waseem Ullah Shah1, Abdul Haleem2, Muneeb Ahamd Khan1, Muhammad Taimur1, Tahreem Shah1, Sajjad Ur Rahman1, Noman Anjum1 and Muhammad Saqib3

1Department of Plant Breeding and Genetics, University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan; 2Research Officer, Directorate of Agriculture Research, District Kila Safullah, Balochistan, Pakistan; 3Department of Agriculture, University of Swabi (KP), Pakistan.

 
*Correspondence | Hamid Ullah Khan and Muhammad Anas, Department of Plant Breeding and Genetics, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan; Email: m.anas@aup.edu.pk 

ABSTRACT

Evaluation of genotypes for morphological and yield-promoting traits over different years is a key component in cultivar development. The main goals of the current research studies were to identify pod worm-resistant/tolerant and high-yielding genotypes over two years along with other desirable traits that could be manipulated in future chickpea breeding programs. The experimental material consisted of 45 chickpea genotypes tested over two years in the Randomize Complete Block Design (RCBD) with three replications at the University of Agriculture, Peshawar. Data was documented in terms of days of emergence, days to flower, plant height, pods per plant, seed per pod, 100 seed weight, grain yield, larval infestation, pod damage percentage and biological yield. The pooled analysis of variance showed highly significant differences (P<0.01) between years and between genotypes and genotype-year interaction (GYI) for all traits examined, except plant height. On average over two years, a minimum of (126) days to flowering were recorded over two years for genotypes D-15015 and D-13011, while a maximum of (136) days to flowering were recorded for genotype K-01209. For plant height over two years, the lowest and highest data were recorded for genotypes NKC-10-99 (72 cm) and FLIP82-150 (104 cm), respectively. The highest (25g) 100-seed weight across two years was shown by genotypes K-88168 followed by KARAK-2. The lowest (5662 kg ha-1) biological yield was recorded for genotype K-08003, whereas the highest (13022kg ha-1) biological yield was observed in D-13011. A lower percentage of damaged pods (17.0%) was observed for NIFA-2005, followed by both genotypes K-01153 (18%) and K-70009 (21%). The lowest grain yield was recorded for genotype D-15012 (328 kg h-1), while the highest grain yield (988 kg ha-1) was from genotypes D-14005, K-60058 (914 kg h-1) and D- 15036 was achieved (910 kg ha-1). GYI genotypes K88170, D-14014, D-14005, K-60058, D-15036, KARAK-2, K-CH47/04, and NIFA-2005 showed the highest grain yield and a lower percentage of pod damage. The genotypes K88170, D-14014, K-60069, K-01153, K-70009, KARAK-2, K-CH47/04, D-15036 and NIFA-2005 performed very well and were registered with less larval infestation and pod damage Percentage and maximum yield over two years, therefore recommended for developing pod worm resistant/tolerant and high yielding chickpea varieties.

To share on other social networks, click on any share button. What are these?

Pakistan Journal of Zoology

August

Pakistan J. Zool., Vol. 56, Iss. 4, pp. 1501-2000

Featuring

Click here for more

Subscribe Today

Receive free updates on new articles, opportunities and benefits


Subscribe Unsubscribe