Submit or Track your Manuscript LOG-IN

The Mitochondrial Genome of the Anisakis simplex (Nematoda: Anisakidae) from Rockfish Sebastes sp.

PJN_42_1_81-87

The Mitochondrial Genome of the Anisakis simplex (Nematoda: Anisakidae) from Rockfish Sebastes sp.

Yujun Shuai and Jinhong Zhao*

Department of Medical Parasitology, Wannan Medical College, Wuhu 241002, China.

Abstract | Anisakis simplex is a zoonotic disease-causing parasitic nematode belonging to the Anisakidae family. In this study, the nematode samples of A. simplex were collected from rockfish Sebastes sp. From the comparison and analysis of the mitochondrial genome of Anisakis simplex, the results revealed a full-length genome with 13,903 bp, including 12 protein-coding genes, 2 rRNAs and 22 tRNAs. There was no encoding gene of atp8, which was consistent with the genome characteristics of Anisakis nematodes. Additionally, 25 related nematodes belonged to 5 different families served as study subjects for the construction of phylogenetic trees.


Received | May 01, 2024; Accepted | June 15, 2024; Published | June 28, 2024

*Correspondence | Jinhong Zhao, Department of Medical Parasitology, Wannan Medical College, Wuhu 241002, China; Email: zhaojh@wnmc.edu.cn

Citation | Shuai, Y. and Zhao, J. 2024. The Mitochondrial Genome of the Anisakis simplex (Nematoda: Anisakidae) from Rockfish Sebastes sp.. Pakistan Journal of Nematology, 42(1): 81-87.

DOI | https://dx.doi.org/10.17582/journal.pjn/2024/42.1.81.87

Keywords | Anisakis simplex, Nematoda, Mitochondrial genome, Phylogenetic analysis, Genome map, Anisakiasis

Copyright: 2024 by the authors. Licensee ResearchersLinks Ltd, England, UK.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).



Introduction

Anisakis simplex (Rudolphi, 1809) (Nematoda: Anisakidae) is a parasitic nematode that can cause zoonotic diseases (Lopienska et al., 2019). Since the pathogenic role of Anisakis in humans was reported in 1960 (Van et al., 1960), there has been increasing understanding of parasitic diseases transmitted by fish (Pravettoni et al., 2012; Ramilo et al., 2023). Anisakiasis is gradually becoming a growing issue in epidemiology as the number of globally identified cases increases (Audicana and Kennedy, 2008; Llorens et al., 2018). The planktonic crustaceans, sea-fish, cephalopods, and marine mammal are all the part of the complicated life cycle of A. simplex (Fæste et al., 2014). The larvae of A. simplex are frequently parasitic in the fish’s ventral muscle (Suzuki et al., 2021). The tendency to enjoy raw or undercooked fish strongly enhances the risk of Anisakiasis due to the dietary habits, the most common nematode infection is the third-stage larvae (L3) of A. simplex (Cipriani et al., 2021; Roca-Geronès et al., 2020). A. simplex can cause gastrointestinal and allergic reactions to human (Audicana and Kennedy, 2008).

As we all know, for the maternal inheritance and relatively conserved genomic architecture of mitochondrial genomes, the information of mitochondrial genomes can provide useful molecular markers for studying the ecology, population genetic structure, and phylogeny of organisms (Li et al., 2008a; Kim et al., 2006).

Materials and Methods

Samples collecting and sequencing

The A. simplex samples were collected from rockfish Sebastes sp. in Santa Barbara, California, USA (119°42’ W, 34°25’ N). The nematode samples were washed by sterile distilled water, then clipped off the head and tail and the remaining part of nematodes were ground and crumbled. The total genomic DNA was extracted from nematode samples using the TIANamp Genomic DNA Kit (TIANGEN, Beijing, China) and followed the manufacturer’s directions. We used 9 pairs of PCR primers (Supplementary Table 1) to amplify the whole mitochondrial genome of the A. simplex, and sequenced the PCR products by GENERAL BIOL Co. (Chuzhou, China) using Sanger sequencing technology.

Sequence analysis

The resulting multiple sequences were manually corrected, edited and spliced using DNAMAN software (Version 8) and annotated after alignment with other existing sequences in the GenBank DNA database. The sequence of complete mitochondrial genome was uploaded to NCBI under the accession number OQ354213.

The mitochondrial genome map of A. simplex was visually analyzed via CGView Serve (Grant and Stothard, 2008) (http://cgview.ca), then manually corrected to ensure annotation accuracy. The colors of the circle represented different genetic traits. The phylogenetic sequences were constructed with 12 protein-coding genes (PCGs) of A. simplex and 24 other nematodes, of which Wuchereria bancrofti (GenBank accession No. NC016186) was selected as the outgroup. The PCGs of 25 nematodes species were compared using MEGA X software for sequencing results and manually trimmed for end-uniform sequences. Then, the topology structure of the obtained PCGs sequence was subsequently analyzed using the Maximum Likelihood (ML) method with 1,000 bootstrapping times.

Results and Discussion

The entire mitochondrial genome of A. simplex is a circular DNA molecule structure, lacking the atp8 gene, and all genes are transcribed in the same direction, which is consistent with the general characteristics of most other nematodes (Kim et al., 2006). The entire length of A. simplex mt DNA is 13,903 bp (Table 1), with a base composition of A 22.8%, T 48.3%, C 9.8%, G 19.1%, and a high percentage of A + T (71.1%). There are a total of 36 genes (Figure 1), including 12 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and 2 ribosomal RNA genes (rRNAs), which are labeled on the entire mitochondrial genome in the same arrangement as the mitochondrial genomes of other Anisakis (Yamada et al., 2017). The start codons of 12 PCGs are TTG (nad1, atp6, nad2, cox3, nad4, cox1, cox2, nad3, nad6), ATT (nad5, nad4L) and ATA (cytb), respectivly. Additionally, 7 PCGs are predicted to end in TAA (nad1, atp6, nad2, nad4, nad6) and TAG (cox2, nad3), while 5 PCGs are predicted to terminate in the incomplete stop codon T (cytb, cox3, cox1, nad5, nad4L). The 22 tRNAs, with a length range of 52bp (tRNA-Ser(AGN)) to 62 bp (tRNA-Lys), and two rRNAs, small subunit rRNA (12S; 699 bp) and large subunit rRNA (16S; 957 bp) are each positioned between tRNA-His and nad3 and between tRNA-Glu and tRNA-Ser(UCN), respectivly.

The 12 mitochondrial PCGs of A. simplex in this study were compared with those of other nematode species downloaded from GenBank (Table 2) through the systematic evolutionary tree with the outgroup of the Wuchereria bancrofti. The phylogenetic tree showed that A. simplex in this study belonged to the family Anisakidae, and it forms a clade with Anisakis simplex (NC007934), Anisakis pegreffii (NC034329) and Anisakis simplex (AP017678) as a monophyletic group with 100% boot strap, and then clustered with Pseudoterranova azarasi (NC027163). The other nematodes in the family Ascarididae, Toxocaridae, Heterocheilidae, Ascaridiidae and Heterakidae have stronger bootstrap value supportting (Figure 2).

Since the discovery of Anisakis in humans (Van et al., 1960), there has been a growing researching of fished vector-borne parasitic diseases and an increase in the study of A. simplex (Pravettoni et al., 2012; Ramilo et al., 2023). In this study, the mitogenome of A. simplex was sequenced, and the total length was 13,903 bp and the related phylogenetic tree was established. The most mitogenome characteristics of A. simplex in this study was consistent with other A. simplex reported before (Mohandas et al., 2014), while there just shared a 98.70% identity with A. simplex (GenBank accession No. NC007934) by comparing the GenBank DNA database in NCBI. We hope that the mitochondrial genome of A. simplex in the study would

 

Table 1: Organization of the Anisakis simplex mitochondrial genome.

Gene

Position From To

Size (bp)

AA (bp)

Spacer(+) Overlap(-)

Start codon

Stop codon

anticodon

nad1

1 873

873

290

13(+)

TTG

TAA

atp6

887 1486

600

199

6(+)

TTG

TAA

trnK

1493 1554

62

8(+)

TTT

trnL2UUR

1563 1617

55

0

TAA

trnS1AGN

1518 1669

52

0

TCT

nad2

1670 2515

846

281

7(+)

TTG

TAA

trnI

2523 2583

61

0

GAT

trnR

2584 2642

59

1(-)

ACG

trnQ

2642 2696

55

0

TTG

trnF

2697 2756

60

0

GAA

cytb

2757 3855

1099

366

0

ATA

T

trnL1CUN

3856 3910

55

0

TAG

cox3

3911 4676

766

255

0

TTG

T

trnT

4677 4732

56

0

TGT

nad4

4733 5962

1230

409

0

TTG

TAA

NCR

5963 6088

126

0

cox1

6089 7664

1576

525

0

TTG

T

trnC

7665 7720

56

0

GCA

trnM

7722 7782

61

1(+)

CAT

trnD

7791 7849

59

8(+)

GTC

trnG

7856 7911

56

6(+)

TCC

cox2

7912 8610

699

232

0

TTG

TAG

trnH

8609 8665

57

2(-)

GTG

rrnL

8672 9628

957

6(+)

nad3

9629 9964

336

111

0

TTG

TAG

nad5

9965 11546

1582

527

0

ATT

T

trnA

11548 11604

58

0

TGC

trnP

11621 11677

57

16(+)

TGG

trnV

11680 11735

56

2(+)

TAC

nad6

11736 12170

435

144

0

TTG

TAA

nad4L

12171 12402

232

77

0

ATT

T

trnW

12403 12460

58

0

TCA

trnE

12469 12528

60

8(+)

TTC

rrnS

12529 13227

699

0

trnS2UCN

13231 13283

53

3(+)

TGA

AT

13284 13782

499

0

trnN

13783 13839

57

5(+)

GTT

trnY

13845 13903

59

0

GTA

 

AA: Amino acid; AT: AT rich region; NCR: Non-coding region.

 

Table 2: The species used to construct the phylogenetic tree and their GenBank accession numbers.

Family

Genus

Species

GenBank accession number

Reference

Ascarididae

Baylisascaris

Baylisascaris ailuri

NC015925

Xie et al., 2011b

Baylisascaris transfuga

NC015924

Xie et al., 2011b

Baylisascaris schroederi

NC015927

Xie et al., 2011b

Baylisascaris procyonis

NC016200

Xie et al., 2011a

Ascaris

Ascaris suum

NC001327

Wolstenholme et al. 1994

Ascaris lumbricoides

NC016198

Park et al., 2011

Ascaris ovis

KU522453

Unpublished

Toxascaris

Toxascaris leonine

NC023504

Liu et al., 2014

Toxocaridae

Toxocara

Toxocara cati

NC010773

Li et al., 2008b

Toxocara canis

AM411108

Li et al., 2008b

Toxocara malaysiensis

NC010527

Li et al., 2008b

Heterocheilidae

Ortleppascaris

Ortleppascaris sinensis

KU950438

Zhao et al., 2018

Anisakidae

Pseudoterranova

Pseudoterranova azarasi

NC027163

Liu et al., 2015

Anisakis

Anisakis simplex

AP017678

Unpublished

Anisakis simplex*

OQ354213

this study

Anisakis simplex

NC007934

Kim et al., 2006

Anisakis pegreffi

NC034329

Yamada et al., 2017a

Contracaecum

Contracaecum osculatum

NC024037

Mohandas et al., 2014

Contracaecum rudolphii B

NC014870

Unpublished

Ascaridiidae

Ascaridia

Ascaridia galli

NC021642

Liu et al., 2013

Ascaridia galli

OQ286042

Shuai et al., 2023

Ascaridia columbae

NC021643

Liu et al., 2013

Heterakidae

Heterakis

Heterakis beramporia

NC029838

Wang et al., 2016

Heterakis

Heterakis gallinarum

NC029839

Wang et al., 2016

Onchocercidae

Wuchereria

Wuchereria bancrofti

NC016186

McNulty et al., 2012

 

Note: * means the species of Anisakis simple in this study.

 

 

gives some more valuable genetic information for phylogenetic analysis, molecular epidemiology, and the biological evolution of related species.

 

Acknowledgements

We are grateful to professor Armand Kuris and his research group from Evolution and Marine Biology, University of California, Santa Barbara, USA, for assistance in collecting the nematode samples from fish.

Novelty Statement

The mitochondrial genome of A. simplex in the study would gives some more valuable genetic information for phylogenetic analysis and the biological evolution of related species.

Author’s Contributions

YJS: Data Processing and Analysis, Methodology, Software, Visualization, Writing - original draft; JH.Z: Conceptualization, Data Processing and Analysis, Investigation, Methodology, Resources, Supervision, Validation, Writing - review and editing.

Funding

This work was granted by Anhui Provincial Natural Science Foundation of China (1608085MC77), Academic Aid Program for Top-notch Talents in Provincial Universities (gxbjZD2020071) and Wuhu Key Research and Development Program of China (2021yf39).

Data Availability Statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/nuccore/OQ354213.

Supplementary Material

There is supplementary material associated with this article. Access the material online at: https://dx.doi.org/10.17582/journal.pjn/2024/42.1.81.87

Conflict of interest

The authors have declared no conflict of interest.

References

Audicana, M.T., Kennedy, M.W., 2008. Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin. Microbiol. Rev. 21: 360-379. https://doi.org/10.1128/CMR.00012-07

Cipriani, P., Palomba, M., Giulietti, L., Bao, M., Mattiucci, S., Levsen, A., 2021. Anisakis simplex (ss) larvae (Nematoda: Anisakidae) hidden in the mantle of European flying squid Todarodes sagittatus (Cephalopoda: Ommastrephidae) in NE Atlantic Ocean: food safety implications. Int. J. Food Microbiol., 339: 109021. https://doi.org/10.1016/j.ijfoodmicro.2020.109021

Fæste, C.K., Jonscher, K.R., Dooper, M.M., Egge-Jacobsen, W., Moen, A., Daschner, A., Egaas, E., Christians, U., 2014. Characterisation of potential novel allergens in the fish parasite Anisakis simplex. EuPA open proteomics 4: 140-155. https://doi.org/10.1016/j.euprot.2014.06.006

Grant, J.R., Stothard, P., 2008. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res., 36: W181-W184. https://doi.org/10.1093/nar/gkn179

Kim, K.H., Eom, K.S., Park, J.K., 2006. The complete mitochondrial genome of Anisakis simplex (Ascaridida: Nematoda) and phylogenetic implications. Int. J. Parasitol., 36: 319-328. https://doi.org/10.1016/j.ijpara.2005.10.004

Li, M.W., Lin, R.Q., Song, H.Q., Wu, X.Y., Zhu, X.Q., 2008. The complete mitochondrial genomes for three Toxocara species of human and animal health significance. BMC genomics, 9: 1-10. https://doi.org/10.1186/1471-2164-9-224

Liu, G.H., Shao, R., Li, J.Y., Zhou, D.H., Li, H., Zhu, X.Q., 2013. The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny. BMC Genomics, 14: 414. https://doi.org/10.1186/1471-2164-14-414

Liu, G.H., Zhou, D.H., Zhao, L., Xiong, R.C., Liang, J.Y., Zhu, X.Q., 2014. The complete mitochondrial genome of Toxascaris leonina: Comparison with other closely related species and phylogenetic implications. Infect. Genet. Evol., 21: 329-333. https://doi.org/10.1016/j.meegid.2013.11.022

Liu, S.S., Liu, G.H., Zhu, X.Q., Weng, Y.B., 2015. The complete mitochondrial genome of Pseudoterranova azarasi and comparative analysis with other anisakid nematodes. Infect. Genet. Evol., 33: 293-298. https://doi.org/10.1016/j.meegid.2015.05.018

Llorens, C., Arcos, S.C., Robertson, L., Ramos, R., Futami, R., Soriano, B., Ciordia, S., Careche, M., González-Muñoz, M., Jiménez-Ruiz, Y., 2018. Functional insights into the infective larval stage of Anisakis simplex ss, Anisakis pegreffii and their hybrids based on gene expression patterns. BMC Genomics, 19: 1-21. https://doi.org/10.1186/s12864-018-4970-9

Lopienska-Biernat, E., Jastrzebski, L., Myszczynski, J.P., Polak, K., Stryinski, I., Robert. 2019. Genome-wide analysis of Anisakis simplex sensu lato: the role of carbohydrate metabolism genes in the parasite’s development. Int. J. Parasitol. 49. https://doi.org/10.1016/j.ijpara.2019.06.006

McNulty, S.N., Mullin, A.S., Vaughan, J.A., Tkach, V.V., Weil, G.J., Fischer, P.U., 2012. Comparing the mitochondrial genomes of Wolbachia-dependent and independent filarial nematode species. BMC Genomics, 13: 145. https://doi.org/10.1186/1471-2164-13-145

Mohandas, N., Jabbar, A., Podolska, M., Zhu, X.-Q., Littlewood, D.T.J., Jex, A.R., Gasser, R.B., 2014. Mitochondrial genomes of Anisakis simplex and Contracaecum osculatum (sensu stricto) comparisons with selected nematodes. Infect. Genet. Evol. 21: 452-462. https://doi.org/10.1016/j.meegid.2013.10.026

Park, Y.C., Kim, W., Park, J.K., 2011. The complete mitochondrial genome of human parasitic roundworm, Ascaris lumbricoides. Mitochondrial DNA, 22: 91-93. https://doi.org/10.3109/19401736.2011.624608

Pravettoni, V., Primavesi, L., Piantanida, M., 2012. Anisakis simplex: current knowledge. Eu. Ann. Allergy Clin. Immunol., 44: 150.

Ramilo, A., Rodríguez, H., Pascual, S., González, Á.F., Abollo, E., 2023. Population Genetic Structure of Anisakis simplex Infecting the European Hake from North East Atlantic Fishing Grounds. Animals, 13: 197. https://doi.org/10.3390/ani13020197

Roca-Geronès, X., Segovia, M., Godínez-González, C., Fisa, R., Montoliu, I., 2020. Anisakis and Hysterothylacium species in Mediterranean and North-East Atlantic fishes commonly consumed in Spain: Epidemiological, molecular and morphometric discriminant analysis. Int. J. food Microbiol., 325: 108642. https://doi.org/10.1016/j.ijfoodmicro.2020.108642

Shuai, Y., Xue, Q., Zou, M., Zhao, J., 2023. The complete mitochondrial genome of the chicken roundworm Ascaridia galli (Nematoda: Ascaridiidae). Mitochondrial DNA B Resour., 8: 1029-1031. https://doi.org/10.1080/23802359.2023.2261638

Suzuki, J., Murata, R., Kodo, Y., 2021. Current status of Anisakiasis and Anisakis larvae in Tokyo, Japan. Food Saf. 9: 89-100. https://doi.org/10.14252/foodsafetyfscj.D-21-00004

Van Thiel, P., Kuipers, F., Roskam, R., 1960. A nematode parasitic to herring, causing acute abdominal syndromes in man. Trop. Geog. Med., 12: 97-113.

Wang, B.J., Gu, X.B., Yang, G.Y., Wang, T., Lai, W.M., Zhong, Z.J., Liu, G.H., 2016. Mitochondrial genomes of Heterakis gallinae and Heterakis beramporia support that they belong to the infraorder Ascaridomorpha. Infect. Genet. Evol., 40: 228-235. https://doi.org/10.1016/j.meegid.2016.03.012

Wolstenholme, D.R., Okimoto, R., Macfarlane, J.L., 1994. Nucleotide correlations that suggest tertiary interactions in the TV-replacement loop-containing mitochondrial tRNAs of the nematodes, Caenorhabditis elegans and Ascaris suum. Nucleic Acids Res. 22: 4300-4306. https://doi.org/10.1093/nar/22.20.4300

Xie, Y., Zhang, Z., Niu, L., Wang, Q., Wang, C., Lan, J., Deng, J., Fu, Y., Nie, H., Yan, N., Yang, D., Hao, G., Gu, X., Wang, S., Peng, X., Yang, G., 2011a. The mitochondrial genome of Baylisascaris procyonis. PloS One, 6: e27066. https://doi.org/10.1371/journal.pone.0027066

Xie, Y., Zhang, Z., Wang, C., Lan, J., Li, Y., Chen, Z., Fu, Y., Nie, H., Yan, N., Gu, X., Wang, S., Peng, X., Yang, G., 2011b. Complete mitochondrial genomes of Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga from giant panda, red panda and polar bear. Gene, 482: 59-67. https://doi.org/10.1016/j.gene.2011.05.004

Yamada, A., Ikeda, N., Ono, H., 2017. The complete mitochondrial genome of Anisakis pegreffii Campana-Rouget & Biocca, 1955, (Nematoda, Chromadorea, Rhabditida, Anisakidae) - clarification of mitogenome sequences of the Anisakis simplex species complex. Mitochondrial DNA B Resour., 2: 240-241. https://doi.org/10.1080/23802359.2017.1318678

Zhao, J.H., Tu, G.J., Wu, X.B., Li, C.P., 2018. Characterization of the complete mitochondrial genome of Ortleppascaris sinensis (Nematoda: Heterocheilidae) and comparative mitogenomic analysis of eighteen Ascaridida nematodes. J. Helminthol., 92: 369-378. https://doi.org/10.1017/S0022149X17000542

To share on other social networks, click on any share button. What are these?

Pakistan Journal of Nematology

June

Pakistan Journal of Nematology, Vol. 42, Iss. 1, Pages 1-87

Featuring

Click here for more

Subscribe Today

Receive free updates on new articles, opportunities and benefits


Subscribe Unsubscribe