Influence of Biochar based Organic Fertilizers on Growth and Concentration of Heavy Metals in Tomato and Lettuce in Chromite Mine Tailings Contaminated Soil
Faiza Altaf1, Shamim Gul1,2*, Tasawar Ali Chandio3, Gul Bano Rehman1, Attiq-ur-Rehman Kakar4, Sami Ullah4, Naqeebullah Khan4, Umbreen Shaheen5, Muhammad Naeem Shahwani6, Muhammad Ajmal7 and Misbah Manzoor8
1Department of Botany, University of Balochistan, Quetta, Pakistan; 2Department of Natural Resource Sciences, McGill University, Quebec, Canada; 3Geological Survey of Pakistan, Saryab road, Quetta, Pakistan; 4Department of Chemistry, University of Balochistan, Quetta, Pakistan; 5Department of Zoology, University of Balochistan, Quetta, Pakistan; 6Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences, Airport Road, 87300, Quetta, Pakistan; 7Pakistan Council of Science and Industrial Research, Mastung Road, 87300, Quetta, Balochistan, Pakistan; 8Department of Plant Sciences, Sardar Bahadur Khan Women’s University, Quetta, Pakistan.
*Correspondence | Shamim Gul, Department of Botany, University of Balochistan, Quetta, Pakistan; Email: shamim.gul@mail.mcgill.ca
Figure 1:
Tomato plants grown under various treatments, control 1; soil without any amendment, control 2; soil with amendment of Cr mine tailing debris, WBPM1; wood-derived biochar + poultry manure amended at 10% rate in Cr mine tailing debris-contaminated soil, WBPM2; wood-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil, WBPMR2; wood-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil, FYPMR1; cow manure –derived biochar + poultry manure amended at 1-% rate in Cr mine tailing debris-contaminated soil, FYPMR2; cow manure-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil.
Figure 2:
Lettuce plants grown under various treatments, control 1; soil without any amendment, control 2; soil with amendment of Cr mine tailing debris, WBPM1; wood-derived biochar + poultry manure amended at 10% rate in Cr mine tailing debris-contaminated soil, WBPM2; wood-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil, FYPM1; cow manure –derived biochar + poultry manure amended at 1-% rate in Cr mine tailing debris-contaminated soil, FYPM2; cow manure-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil, WBPMR1; wood-derived biochar + poultry manure amended at 10% rate in Cr mine tailing debris-contaminated soil, WBPMR2; wood-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil, FYPMR1; cow manure –derived biochar + poultry manure amended at 1-% rate in Cr mine tailing debris-contaminated soil, FYPMR2; cow manure-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil.
Figure 3:
Average (±SD) of aboveground plant biomass and root biomass of tomato and lettuce (n= 3, FYPM2 and FYPMR2 for tomato had only one replication). Bars with different letters show significant difference at P<0.05. control 1; soil without any amendment, control 2; soil with amendment of Cr mine tailing debris, WBPM1; wood-derived biochar + poultry manure amended at 10% rate in Cr mine tailing debris-contaminated soil, WBPM2; wood-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil, FYPM1; cow manure –derived biochar + poultry manure amended at 1-% rate in Cr mine tailing debris-contaminated soil, FYPM2; cow manure-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil, WBPMR1; wood-derived biochar + poultry manure amended at 10% rate in Cr mine tailing debris-contaminated soil, WBPMR2; wood-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil, FYPMR1; cow manure –derived biochar + poultry manure amended at 1-% rate in Cr mine tailing debris-contaminated soil, FYPMR2; cow manure-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil.
Figure 4:
Average (± SD) of water use efficiency (WUE) of tomato (n= 3, FYPM2 and FYPMR2 for tomato had only one replication). Bars with different letters indicate significant difference at P<0.05. control 1; soil without any amendment, control 2; soil with amendment of Cr mine tailing debris, WBPM1; wood-derived biochar + poultry manure amended at 10% rate in Cr mine tailing debris-contaminated soil, WBPM2; wood-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil, FYPM1; cow manure –derived biochar + poultry manure amended at 1-% rate in Cr mine tailing debris-contaminated soil, FYPM2; cow manure-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil, WBPMR1; wood-derived biochar + poultry manure amended at 10% rate in Cr mine tailing debris-contaminated soil, WBPMR2; wood-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil, FYPMR1; cow manure –derived biochar + poultry manure amended at 1-% rate in Cr mine tailing debris-contaminated soil, FYPMR2; cow manure-derived biochar + poultry manure amended at 20% rate in Cr mine tailing debris-contaminated soil.