Submit or Track your Manuscript LOG-IN

Nano-Carbonated Hydroxyapatite from Bovine Bone Combined With Platelet-Rich Plasma Accelerates Fracture Healing in Rattus norvegicus Models

Nano-Carbonated Hydroxyapatite from Bovine Bone Combined With Platelet-Rich Plasma Accelerates Fracture Healing in Rattus norvegicus Models

Zahra Jamilah Sabrina1, Adrian Pearl Gunawan2, Beryl Reinaldo Chandra2, Ilham Pangestu Harwoko3, Johannes Marulitua Nainggolan4,Widi Nugroho1* 

1Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia; 2Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia; 3Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia; 4Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia.

*Correspondence | Widi Nugroho, Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia; Email: [email protected] 

ABSTRACT

Fracture causes physical disability, psychological stress or even fatal to a patient. Autograft and allograft have long been used to improve fracture healing, but flaws limit their use. Xenograft from micro-carbonated hydroxyapatite (micro-CHA) and nano-CHA from bovine bone combined with Platelet-Rich Plasma (PRP) was hypothesized to accelerate fracture healing. This study aimed to characterise micro-CHA and nano-CHA synthesized from bovine bone and analyze their effects as xenografts on fracture healing in Rattus norvegicus models. The micro-CHA was synthesized using thermal treatment at 720oC, and nano-CHA was made from the micro-CHA using nano-milling. The PRP was isolated from each rat. Twenty four rats were fractured at the right tibial bones and divided into four groups; control, micro-CHA, micro-CHA+PRP, and nano-CHA+PRP treatments. Characteristics of micro-CHA and nano-CHA were analysed using Particle Size Analyser (PSA), Fourier Transform Infrared Spectroscopy (FTIR), XRD (X-Ray Diffraction) and Scanning Electron Microscope (SEM). The course of fracture healings was analysed at 21 days post-treatment using Emery’s score and Kruskal-Wallis and Mann Whitney U statistics. Results showed that micro-CHA has a molecular formula of Ca10(PO4)3(CO3)5(OH) and a crystallinity level of 89.97%. Nano-CHA has agglomerate sizes of 82.68 – 153.00 nm. Emery’s score in the nano-CHA+PRP group was highest amongst all groups (P<0.05). Emery’s score in the micro-CHA+PRP group was higher than that in the micro-CHA and control groups (P<0.05). Emery’s scores in the control and micro-CHA groups were similar (P>0.05). This study suggests that PRP-supplemented nano-CHA from bovine bone could accelerate fracture healing in rat models.

Keywords | Bone graft, Xenograft, Nano-carbonated hydroxyapatite, Platelet Rich Plasma, Fracture  

To share on other social networks, click on any share button. What are these?

Advances in Animal and Veterinary Sciences

1

Adv. Anim. Vet. Sci., Vol. 13, Iss. 1, pp. 1-216

Featuring

Click here for more

Subscribe Today

Receive free updates on new articles, opportunities and benefits


Subscribe Unsubscribe