Submit or Track your Manuscript LOG-IN

Evaluating the Performance of Genetically Engineered Serine acetyltransferase 4 (NtSAT4) Overexpression Brassica napus L. Lines under Xenobiotics Exposure

Evaluating the Performance of Genetically Engineered Serine acetyltransferase 4 (NtSAT4) Overexpression Brassica napus L. Lines under Xenobiotics Exposure

Fariha Qahar and Muhammad Sayyar Khan*

Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan.

 
*Correspondence | Muhammad Sayyar Khan, Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan; Email: [email protected] 

ABSTRACT

Glutathione (GSH) is a powerful antioxidant thiol compound that is critical for the detoxification of xenobiotics in plants. The genetic manipulation of GSH biosynthesis-related genes is considered a prime strategy to achieve higher in planta GSH contents. In this study, stably transformed Brassica napus lines harboring the feedback-insensitive isoform of Serine acetyltransferase (SAT), a rate-limiting enzyme for cysteine (Cys), and GSH biosynthesis, were subjected to H2O2, metolachlor, and atrazine-induced oxidative stress. The overexpression of the NtSAT4 gene from Nicotiana tobacco under 35S promoters in various compartments of the cell, which includes cytosol, plastids, and mitochondria in transgenic lines, resulted in enhanced tolerance in terms of lesser wilting and pigment discoloration to induced stress compared to non-transformed plants. In terms of approximate percentage damage, under 14% H2O2stress,30-60% of the leaf area turned necrotic in the single overexpression lines compared to 95% damage in the wild-type plants. Whereas, the least amount of damage (10-20%) was observed in the double overexpression lines. When subjected to 24 µM metolachlor, the wild-type leaf discs were fully necrotic, whereas the single overexpression lines exhibited 20-60%, and the double overexpression lines showed only 15-20% necrosis. The data suggested that overexpression of NtSAT4 is a promising strategy for improved stress tolerance against these xenobiotics in B. napus.

To share on other social networks, click on any share button. What are these?

Sarhad Journal of Agriculture

December

Vol.40, Iss. 4, Pages 1102-1532

Featuring

Click here for more

Subscribe Today

Receive free updates on new articles, opportunities and benefits


Subscribe Unsubscribe